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Abstract

In this thesis, we review the convex Darboux theorem by Ekeland and

Nirenberg [14]. Moreover, we give the necessary and sufficient conditions for

a smooth k-homogeneous differential 1-form ω defined in a neighborhood U

of some point x̄ ∈ Rn to be decomposed as

ω = f 1(x)dg1(x) + . . .+ fk(x)dgk(x)

for all x in some neighborhood V ⊂ U of x̄ where f 1, . . . , fk are homogeneous

functions of arbitrary degree and g1, . . . , gk are homogeneous of degree zero.

Finally, we give some economic applications to both results from consumer

theory.
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Chapter 1
Some Basic Definitions and

Results

We review some definitions and results that we will use in this thesis. A

detailed exposition on the following definitions and the proof of next theorem

can be found in [20].

Definition 1.1. [Cone] A cone C in Rn is a set of points such that if x ∈ C,

then so is every positive scalar multiple of x, i.e, if x ∈ C, then λx ∈ C for

all λ > 0.

Definition 1.2. [Homogeneous Function] Let g : C ⊂ Rn → R be a C1

function defined on a cone C. Then, g is said to be homogenous of degree

k ∈ R (k-homogeneous) if for any real number t > 0, the following holds

g(tx1, tx2, . . . , txn) = tkg(x1, x2, . . . , xn), ∀x ∈ C.

Theorem 1.1. [Euler’s Theorem] A C1 function g is k-homogeneous on

a cone C ⊂ Rn if and only if

n∑
i=1

∂g

∂xi
(x)xi = kg(x), ∀x ∈ C.

3
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Definition 1.3. [Convex Set] A set U is called convex if for any points

x, y in U , the line segment joining x and y

l(x, y) = {tx+ (1− t)y : 0 ≤ t ≤ 1}

is also in U .

Definition 1.4. [Convex Function] A real-valued function g defined on a

convex set U ⊂ Rn is convex if for all x, y in U and t ∈ [0, 1],

g(tx+ (1− t)y) ≤ tg(x) + (1− t)g(y).

Definition 1.5. [Strongly Convex Function] A real-valued function g(x)

defined on a convex set U ⊂ Rn is strongly convex if there exists α > 0 such

that g(x)− α
2
||x||2 is convex for all x ∈ U .

Definition 1.6. [Quasiconvex Function] A real-valued function g defined

on a convex set U ⊂ Rn is quasiconvex if for all x, y in U and t ∈ [0, 1],

g(tx+ (1− t)y) ≤ max{g(x), g(y)}.

Definition 1.7. [Positive Definite Matrices] A symmetric matrix A ∈

Rn×n is called positive definite if

xTAx > 0, ∀x 6= 0 ∈ Rn.

Definition 1.8. [Positive Semidefinite Matrices] A symmetric matrix

A ∈ Rn×n is called positive semidefinite if xTAx ≥ 0 for all x 6= 0 ∈ Rn.

Theorem 1.2. Let U be an open convex set of Rn, and let f : U → R be

a C2 function. Then, f is a convex function on U if and only if D2f(x) is

a positive semidefinite matrix for all x ∈ U , where D2f(x) is the Hessian
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matrix of f(x) defined as

D2f(x) =



∂2f
∂x2

1

∂2f
∂x2∂x1

· · · ∂2f
∂xn∂x1

∂2f
∂x1∂x2

∂2f
∂x2

2
· · · ∂2f

∂xn∂x2

... ... . . . ...

∂2f
∂x1∂xn

∂2f
∂x2∂xn

· · · ∂2f
∂x2

n


Theorem 1.3. Let U be an open convex set of Rn, and let g : U → R be a

C2 function. Then, g(x) is a strongly quasi-convex function on U if D2g(x)

is a positive definite matrix on {∇g(x)}⊥.

Theorem 1.4 (Envelope Theorem for Constrained Problems). Let

x∗(a) ∈ Rn denote the solution of the following problem:

max f(x; a)

s.t g1(x; a) = 0, . . . , gk(x; a) = 0.

Let λ1(a), . . . , λk(a) be the Lagrange multipliers for each constraint in this

problem. Then

d

da
f(x∗(a), a)︸ ︷︷ ︸

Total derivative for the original function f

=
∂

∂a
L(x∗(a), λ(a), a)︸ ︷︷ ︸

Partial derivative of Lagrange



Chapter 2
Exterior Differential Calculus

2.1 Differential Manifolds

Here we will define a differential manifold

Definition 2.1. [17][Manifold] A manifold M of dimension n is a topoloy-

ical space M , such that each point x ∈ M has a neighborhood which is

homeomorphic to an open set in the Euclidean space Rn.

Definition 2.2. [17][Chart] A chart for a manifold M is a subset U of M

together with a bijective map

φ : U → φ(U).

where φ(U) ⊂ Rn. Usually we denote the coordinates of a point m ∈ U ⊂M

by φ(m) = (x1, x2, . . . , xn).

Definition 2.3. [17][Compatible] Two charts on a manifold M , (U, φ) and

(U ′, φ′) are called compatible, if U ∩U ′ = ∅, or φ(U ∩U ′) and φ′(U ∩U ′) are

open subsets of Rn and the maps

φ ◦ (φ′)−1 : φ′(U ∩ U ′)→ φ(U ∩ U ′)

6



2.1 Differential Manifolds 7

φ′ ◦ φ−1 : φ(U ∩ U ′)→ φ′(U ∩ U ′)

are smooth.

Definition 2.4. [17][Atlas] A collection of charts

A = {φα : Uα → Vα|α ∈ I}

is called an atlas if for any pair of indices i, j, (Uαi
, φαi

) and (Uαj
, φαj

) are

compatible and
⋃
α∈I

Uα = M.

Example 2.1. [17] The unit sphere

Sn = {(a1, a2, . . . , an+1) ∈ Rn+1|(a1)2 + (a2)2 + . . .+ (an+1)2 = 1}

(n ≥ 1) has an atlas consisting of two charts, we construct as follow:

Any point (a1, a2, . . . , an+1) ∈ Sn, different from (0, . . . , 0, 1), can be

joined with (0, . . . , 0, 1) by straight line that intersects the hyperplane

an+1 = 0 at some point (b1, b2, . . . , bn, 0). The condition that three points

(a1, a2, . . . , an+1), (0, . . . , 0, 1) and (b1, b2, . . . , bn, 0) lie on a straight line yields

(b1, b2, . . . , bn, 0)− (0, . . . , 0, 1) = λ[(a1, a2, . . . , an+1)− (0, . . . , 0, 1)] (2.1)

for some λ ∈ R. We consider the last component in the vector equation (2.1),

we have

λ =
1

1− an+1

Substitute the value of λ in equation (2.1), we find a map

φ : Sn\(0, . . . , 0, 1)→ Rn

defined by

φ(a1, a2, . . . , an+1) =
1

1− an+1
(a1, a2, . . . , an)
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The pair (U, φ), where U = Sn\(0, . . . , 0, 1), is a chart for Sn, since φ is

injective and φ(U) = Rn.

In a similar manner, joining the points of Sn with (0, . . . , 0,−1), we

obtain a map

χ : Sn\(0, . . . , 0,−1)→ Rn

that given by

χ(a1, a2, . . . , an+1) =
1

1 + an+1
(a1, a2, . . . , an).

The pair (V, χ), where V = Sn\(0, . . . , 0,−1), is a chart for Sn.

Then, the unit sphere has an atlas consisiting of two charts (U, φ) and (V, χ).

Definition 2.5. [17] Two atlases are called equivalent if their union is also

an atlas.

Definition 2.6. [17][Differential Manifold] A differential manifold is a

set of points together with a finite set of subsets Ui ⊂ M and one-to-one

mappings

φi : Ui → Rn

such that

1. M =
⋃
i

Ui.

2. For any nonempity intersection Ui ∩ Uj, the set φi(Ui ∩ Uj) is an open

subset of Rn, and the one-to-one mapping φj ◦φ−1
i is a smooth function

on φi(Ui ∩ Uj).

Definition 2.7. [17] A differential manifold M is called an n-manifold if

every chart has domain in an n-dimensional vector space.
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2.2 Tangent Space

Two curves t → c1(t) and t → c2(t) in an n-manifold M are called

equivalent at m if

c1(0) = c2(0) = m, (φ ◦ c1)′(0) = (φ ◦ c2)′(0)

for some chart φ.

Remark 2.1. The Equivalence does not depend on the choice of chart.

Proof. Let c1(t) and c2(t) be equivalent curves in an n-manifold M at m,

then

c1(0) = c2(0) = m, (φ ◦ c1)′(0) = (φ ◦ c2)′(0)

for some chart φ.

If we change to a chart η, then

(η ◦ c1)′(0) = ((η ◦ φ−1) ◦ (φ ◦ c1))′(0) = (η ◦ φ−1)′(φ ◦ c1)′(0)

(η ◦ c2)′(0) = ((η ◦ φ−1) ◦ (φ ◦ c2))′(0) = (η ◦ φ−1)′(φ ◦ c2)′(0)

But, (φ ◦ c1)′(0) = (φ ◦ c2)′(0), then

(η ◦ c1)′(0) = (η ◦ c2)′(0)

Definition 2.8. Let C be a differentiable curve in M and f ∈ C∞(M), then

C∗f = f ◦ C is a differentiable function from an open subset I ⊂ R into R.

If t0 ∈ I, then the tangent vector to C at the point C(t0), denoted by C
′
t0

,

defined by

C
′

t0
[f ] =

d

dt
(C∗f)

∣∣∣∣
t0

= lim
t→t0

f(C(t))− f(C(t0))

t− t0
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Hence, C
′
t0

is a map from f ∈ C∞(M) into R with the properties

i. C
′
t0

[af+bg] = aC
′
t0

[f ]+bC
′
t0

[g], for all a, b ∈ R and f, g ∈ C∞(M).

ii. C
′
t0

[fg] = f(C(t0))C
′
t0

[g] + g(C(t0))C
′
t0

[f ], for all f, g ∈ C∞(M).

The properties of tangent vector to a curve lead to the following definition.

Definition 2.9. Let p be a point in a manifold M , a tangent vector to M

at p is a map, vp of C∞(M) into R such that

vp[af + bg] = avp[f ] + bvp[g]

vp[fg] = fvp[g] + gvp[f ]

for all a, b ∈ R and f, g ∈ C∞(M) .

Definition 2.10. [17] The tangent space to a manifold M at p ∈ M is the

set of all tangent vectors to M at the point p, and it is denoted by TpM .

Remark 2.2. The tangent space is a real vector space with the operations

defined by

(vp + wp)[f ] = vp[f ] + wp[f ]

(avp)[f ] = a(vp[f ]).

for vp, wp ∈ TpM, f ∈ C∞(M), and a ∈ R.

Definition 2.11. [17] The tangent bundle of a manifold M , denoted by

TM , is the set of all tangent vectors at all points of M , that is,

TM =
⋃
p

TpM.

Hence, a point of TM is a vector v that is tangent to M at some point

p ∈ M . If a manifold M is an n-dimensional, then the manifold TM is a

2n-dimensional.
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If (U, φ) is a chart on M , with coordinates x1, x2, . . . , xn and p ∈ U , then

the tangent vectors, ( ∂
∂x1

)p, (
∂
∂x2

), . . . , ( ∂
∂xn

)p, are defined by(
∂

∂xi

)
p

[f ] = Di(f ◦ φ−1)|φ(x)

where Di is the partial derivative with respect to the ith argument; that is,(
∂

∂xi

)
p

[f ] = lim
t→0

1

t
[(f ◦ φ−1)(x1(p), . . . , xi(p) + t, . . . , xn(p))

−(f ◦ φ−1)(x1(p), . . . , xi(p), . . . , xn(p))].

Take f = xj in the previous formula, and noting that

(xj ◦ φ−1)(x1(p), . . . , xi(p), . . . , xn(p)) = (xj ◦ φ−1)(φ(p)) = xj(p)

and,

(xj ◦ φ−1)(x1(p), . . . , xi(p) + t, . . . , xn(p)) =

x
j, if i 6= j

xj + t, if i = j

(for t is sufficiently small, so that all the points lie in U)

(
∂

∂xi

)
p

[xj] = δji =

0, if i 6= j

1, if i = j

.

Theorem 2.1. If (U, φ) is a chart on M and p ∈ U , the set {( ∂
∂xi

)p}ni=1 is a

basis for TpM .

If we replace each vector space TpM with its dual space T ∗pM , we obtain

a new 2n-manifold called the cotangent bundle, denoted by T ∗M . The dual

basis to ∂
∂xi

is denoted by dxi.
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Thus, relative to a choice of local coordinates we get the basic formula

df =
n∑
i=1

∂f

∂xi
dxi

for any smooth function f : M → R.

2.3 Differential forms

The main idea of differential forms is to provide a generaliztion of the

basic operations of vector calculus, div, grad, and curl, and the integral

theorems of Green, Gauss, and stokes to a manifold of certain dimension.

They are applied in some areas of physics, mainly in classical mechanics, and

of mathematics, such as differential equation, and differential geometry. A

simple example of differential 0-form is a real-valued function.

Definition 2.12. [17][Multilinear map] A map β : V × V × . . . × V (k-

factor) → R is called a multilinear if it is linear in each of its factors; that

is, for all v1, v2, . . . , vk ∈ V ,

β(v1, v2, . . . , avi + bv′i, . . . , vk)

= aβ(v1, v2, . . . , vi, . . . , vk) + bβ(v1, v2, . . . , v
′
i, . . . , vk),

∀1 ≤ i ≤ k.

Definition 2.13. [17][Skew map] A k-multilinear map β : V × V × . . .×

V → R is called a skew (or alternating) if it changes sign whenever two of

its arguments are interchanged; that is, for all v1, v2, . . . , vk ∈ V ,

β(v1, v2, . . . , vi, . . . , vj, . . . , vk) = −β(v1, v2, . . . , vj, . . . , vi, . . . , vk).



2.3 Differential forms 13

Definition 2.14. [7][Tensor] A tensor of type (k, l) at a point x in a

manifold M is a multilinear map which takes k vectors and l covectors and

gives a real number,

Tx : TxM × TxM × . . .× TxM︸ ︷︷ ︸
k-times

×T ∗xM × T ∗xM × . . .× T ∗xM︸ ︷︷ ︸
l-times

→ R.

Definition 2.15. [17][Differential 1-form] A differential 1-form on a man-

ifold M is a linear map ω that is defined on a tangent space of M at a point

m

ω(m) : TmM → R.

Definition 2.16. [17][Differential 2-form] A differential 2-form on a man-

ifold M is an alternate bilinear map ω that is defined on a tangent space of

M at a ponit m

ω(m) : TmM × TmM → R

Definition 2.17. [17][Differential k-form] A differential k-form on a man-

ifold M is an alternate k-multilinear map ω that is defined on a tangent space

of M at m

ω(m) : TmM × . . .× TmM︸ ︷︷ ︸
k-times

→ R.

Note that a differential k-form is a tensor of type (k, 0) with a skew-

symmetry assumption.

A differential k-form on Rn is a map ω which has the following
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form

ω(x) =
∑

i1<...<ik

fi1,...,ik(x)(dxi1 ∧ . . . ∧ dxik)x, ij ∈ {1, . . . , n},

where the fi1,...,ik are differentiable real-valued functions on Rn, such that

dxi ∧ dxj = −dxj ∧ dxi.

2.4 Tensor and Exterior Products

Definition 2.18. [7][Tensor Product] Let T1 and T2 be two tensors at a

point x on a manifold M of types (k1, l1) and (k2, l2), respectively. Then, the

tensor product T1⊗T2 is the tensor at x ∈M of type (k1 +k2, l1 + l2) defined

by

T1 ⊗ T2(v1, . . . , vk1+k2 , w1, . . . , wl1+l2) = T1(v1, . . . , vk1 , w1, . . . , wl1)

×T2(vk1+1, . . . , vk1+k2 , wl1+1, . . . , wl1+l2)

for all vectors v1, . . . , vk1+k2 ∈ TxM and for all covectors w1, . . . , wl1+l2 ∈

T ∗xM .

Definition 2.19. [17][Alternation Operator A] If α is (p, 0)-tensor, de-

fine the alternation operator A acting on α by

A(α)(v1, v2, . . . , vp) =
1

p!

∑
σ∈Sp

sgn(σ)α(vσ(1), vσ(2), . . . , vσ(p))

where the sgn(σ) is the sign of the permutation σ :

sgn(σ) =

1 if σ is even,

−1 if σ is odd,

and Sp is the group of all permutations of the set {1, 2, . . . , p}. The operator
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A skew-symmetrizes p-multilinear maps.

Definition 2.20. [17][Exterior Product] If α is a k-form and β is an

l-form on M , their exterior product α ∧ β is the (k + l)-form on M defined

by

α ∧ β =
(k + l)!

k!l!
A(α⊗ β).

Example 2.2. If α and β are 1-forms ( (1, 0)-tensors ), then

α ∧ β(v1, v2) =
2!

1!1!
A(α⊗ β)(v1, v2)

where

A(α⊗ β)(v1, v2) =
1

2!

∑
σ∈S2

sgn(σ)(α⊗ β)(vσ(1), vσ(2))

=
1

2!

∑
σ∈{(1)(2),(12)}

sgn(σ)(α⊗ β)(vσ(1), vσ(2))

=
1

2
sgn((1)(2))(α⊗ β)(v1, v2) +

1

2
sgn((12))(α⊗ β)(v2, v1)

=
1

2
α(v1)β(v2)− 1

2
α(v2)β(v1)

Thus,

α ∧ β(v1, v2) = α(v1)β(v2)− α(v2)β(v1)

Example 2.3. Let α be a 2-form ((2, 0)-tensor) and β be a 1-form ((1, 0)-

tensor), then

α ∧ β(v1, v2, v3) = α(v1, v2)β(v3) + α(v2, v3)β(v1) + α(v3, v1)β(v2).

The exterior product of the differential forms has the following properties.

Proposition 2.2. [17] Let α be a k-form, β be an s-form, γ1 and γ2 are

r-forms and a, b are real-valued functions.

Then:



2.4 Tensor and Exterior Products 16

i. The exterior product is associative: (α ∧ β) ∧ γ = α ∧ (β ∧ γ).

ii. The exterior product is homogeneous: (aα) ∧ β = α ∧ (aβ) =

a(α ∧ β).

iii. The exterior product is distributive:

α ∧ (aγ1 + bγ2) = aα ∧ γ1 + bα ∧ γ2

(aγ1 + bγ2) ∧ β = aγ1 ∧ β + bγ2 ∧ β.

iv. The exterior product is anticommutative: α∧ β = (−1)ksβ ∧α.

v. If k is odd then α∧α = 0. But, it is not true that α∧α = 0 in general.

vi. For any k-form ω, (ω)s = ω ∧ ω ∧ . . . ∧ ω︸ ︷︷ ︸
s-times

is a (ks)-form.

Proposition 2.3. [16] Differential 1−forms ω1, ω2, . . . , ωr are linearly de-

pendent if and only if their exterior product vanishes; i.e.,

ω1 ∧ ω2 ∧ . . . ∧ ωr = 0

Proof. Let ω1, ω2, . . . , ωr be linearly dependent 1−forms. Without loss of

generality, assume that ω1 can be expressed as a linear combination of the

others,

ω1 = a2ω2 + a3ω3 + . . .+ arωr

Using the properties of the exterior product, we obtain

ω1 ∧ ω2 ∧ . . . ∧ ωr = (
r∑
i=2

aiωi) ∧ ω2 ∧ . . . ∧ ωr

= a2ω2 ∧ ω2 ∧ . . . ∧ ωr + a3ω3 ∧ ω2 ∧ . . . ∧ ωr + . . .+ arωr ∧ ω2 ∧ . . . ∧ ωr

= 0 + 0 + . . .+ 0

= 0.
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Conversely, by contradiction, suppose ω1, ω2, . . . , ωr are linearly independent

1−forms, then there exists a basis {ei} such that

e1 = ω1, e2 = ω2, . . . , er = ωr

But,

e1 ∧ e2 ∧ . . . ∧ er = ω1 ∧ ω2 ∧ . . . ∧ ωr = 0

Which is a contradiction, since e1 ∧ e2 ∧ . . . ∧ er is a basis vector, it cannot

vanish.

2.5 Examples of Algebraic Computation of

The Exterior Product

Example 2.4. Let ω = x1dx1 + x3dx2 + x2dx3 be a 1-form in R3 and φ =

x1dx1 ∧ dx2 + x2dx1 ∧ dx3 be a 2-form in R3. Using the fact, dxi ∧ dxi = 0

and dxi ∧ dxj = −dxj ∧ dxi, ∀i, j ∈ {1, 2, 3}.

ω ∧ φ = (x1dx1 + x3dx2 + x2dx3) ∧ (x1dx1 ∧ dx2 + x2dx1 ∧ dx3)

=
���

���
���

���:0

(x1)2dx1 ∧ dx1 ∧ dx2 +
���

���
���

��:0

x1x2dx1 ∧ dx1 ∧ dx3

+
���

���
���

��:0

x1x3dx2 ∧ dx1 ∧ dx2 + x2x3dx2 ∧ dx1 ∧ dx3

+x1x2dx3 ∧ dx1 ∧ dx2 +
���

���
���

���:0

(x2)2dx3 ∧ dx1 ∧ dx3

= (x1x2 − x2x3)dx1 ∧ dx2 ∧ dx3.

Example 2.5. Let α = x1dx1 + x2dx2 be a 1-form in R3 and β = x1x3dx1 ∧
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dx3 + x2x3dx2 ∧ dx3 be a 2-form in R3.

α ∧ β = (x1dx1 + x2dx2) ∧ (x1x3dx1 ∧ dx3 + x2x3dx2 ∧ dx3)

=
���

���
���

���
�:0

(x1)2x3dx1 ∧ dx1 ∧ dx3 + x1x2x3dx1 ∧ dx2 ∧ dx3

+x1x2x3dx2 ∧ dx1 ∧ dx3 +
���

���
���

���:
0

(x2)2x3dx2 ∧ dx2 ∧ x3

= (x1x2x3 − x1x2x3)dx1 ∧ dx2 ∧ x3 = 0.

Note that, β = α ∧ γ, where γ = x3dx3 is a 1-form in R3. So, α ∧ β =

α ∧ α ∧ γ = 0.

Example 2.6. Let ω = x1dx1 ∧ dx2 + x2dx3 ∧ dx4 be a 2-form in R4.Then

ω ∧ ω = 2x1x2dx1 ∧ dx2 ∧ dx3 ∧ dx4

2.6 Exterior Derivative

We now define the exterior derivative of differential forms.

Definition 2.21. [17] The exterior derivative of a differential k-form α on

a manifold M is the differential (k + 1)-form on M , denoted by dα.

The exterior derivative can be determined by the following proposition.

Proposition 2.4. [17] There is a unique linear operator d from the set of k-

forms on a manifold M ; Λk(M), to the set of (k+ 1)-forms on M ; Λk+1(M),

such that

d : Λk(M)→ Λk+1(M)
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i. If α is a 0-form; that is, α ∈ C∞(M), then dα is the 1-form.

dα =
n∑
i=1

∂α

∂xi
dxi.

ii. d is a linear operation, that is, for all real numbers a and b,

d(aα1 + bα2) = adα1 + bdα2

.

iii. d2α = 0, that is, d(dα) = 0 for any k-form α.

iv. If α =
∑

i1<...<ik
fi1,...,ikdxi1 ∧ . . . ∧ dxik is a k-form in Rn, then the

coordinate expression for the exterior derivative is

dα =
∑ ∂fi1,...,ik

∂xj
dxj ∧ dxi1 ∧ . . .∧ dxik (sum on all j and i1 < . . . < ik )

Definition 2.22. [17] A differential k-form ω is called closed if dω = 0, and

exact if there exists a differential (k − 1)-form α such that dα = ω.

Definition 2.23. [8] Let M be a differentiable manifold. A one-parameter

group of transformations; ϕ, on M , is a differentiable map from M ×R onto

M such that ϕ(x, 0) = x and ϕ(ϕ(x, t), s) = ϕ(x, t+s) for all x ∈M, t, s ∈ R.

The infinitesimal generator of ϕ is the vector field X such that Xx =

(ϕ(x, 0)
′
).

Lemma 2.5. [17][Poincaré’s Lemma] A closed form is locally exact;

that is, if the differential k-form ω is closed(dω = 0) then there exists a

differential (k − 1)-form α such that ω = dα on some neighborhood of each

point.

The proof can be found in [8].
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Theorem 2.6. [13][Cartan’s Magic Formula] The exterior derivative

of the exterior product of a differential p-form ω and a differential q-form ϕ

is given by

d(ω ∧ ϕ) = dω ∧ ϕ+ (−1)pω ∧ dϕ

2.7 Examples of Algebraic Computations of

The Exterior Derivative

Example 2.7. Let ω =
n∑
i=1

ωidx
i be 1-form in Rn, then

dω = d(
n∑
i=1

ωidx
i)

=
n∑
i=1

dωi ∧ dxi

=
n∑

i,j=1

∂ωi
∂xj

dxj ∧ dxi

=
n∑

1≤i<j≤n

∂ωi
∂xj

dxj ∧ dxi +
n∑

1≤j<i≤n

∂ωi
∂xj

dxj ∧ dxi

= −
n∑

1≤i<j≤n

∂ωi
∂xj

dxi ∧ dxj +
n∑

1≤i<j≤n

∂ωj
∂xi

dxi ∧ dxj

=
n∑

1≤i<j≤n

(
∂ωj
∂xi
− ∂ωi
∂xj

)dxi ∧ dxj.
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Example 2.8. Let ω = x2

(x1)2
dx1 + 1

x1
dx2 be a differential 1-form in Rn, then

dω =

(
2x2

(x1)3
dx1 +

1

(x1)2
dx2

)
∧ dx1 +

−1

(x1)2
dx1 ∧ dx2

=
2x2

(x1)3
dx1 ∧ dx1 +

1

(x1)2
dx2 ∧ dx1 +

−1

(x1)2
dx1 ∧ dx2 = 0

So, ω is a closed 1-form. By Poincaré’s Lemma, there exists a 0-form

f = x2

x1
such that df = ω on some neighborhood of each point.

Example 2.9. Let ω =
∑

1≤i<j≤n
ωi,jdx

i ∧ dxj be a differential 2-form in Rn,

then

dω =
∑

1≤i<j≤n

dωi,j ∧ dxi ∧ dxj

=
∑

1≤i<j≤n

n∑
k=1

∂ωi,j
∂xk

dxk ∧ dxi ∧ dxj

=
∑

1≤k<i<j≤n

∂ωi,j
∂xk

dxk ∧ dxi ∧ dxj +
∑

1≤i<k<j≤n

∂ωi,j
∂xk

dxk ∧ dxi ∧ dxj

+
∑

1≤i<j<k≤n

∂ωi,j
∂xk

dxk ∧ dxi ∧ dxj

=
∑

1≤i<j<k≤n

∂ωj,k
∂xi

dxi ∧ dxj ∧ dxk +
∑

1≤i<j<k≤n

∂ωi,k
∂xj

dxj ∧ dxi ∧ dxk

+
∑

1≤i<j<k≤n

∂ωi,j
∂xk

dxk ∧ dxi ∧ dxj

=
∑

1≤i<j<k≤n

(
∂ωj,k
∂xi

− ∂ωi,k
∂xj

+
∂ωi,j
∂xk

)dxi ∧ dxj ∧ dxk
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Example 2.10. Let α = xyz2dx ∧ dy + ydx ∧ dz be 2-form in R3, then

dα = (yz2dx+ xz2dy + 2xyzdz) ∧ dx ∧ dy + dy ∧ dx ∧ dz

=
��

���
���

�:0
yz2dx ∧ dx ∧ dy +

��
���

���
�:0

xz2dy ∧ dx ∧ dy + 2xyzdz ∧ dx ∧ dy + dy ∧ dx ∧ dz

= 2xyzdz ∧ dx ∧ dy + dy ∧ dx ∧ dz

= (2xyz − 1)dx ∧ dy ∧ dz.
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2.8 Interior Product and Lie Derivative

Definition 2.24. [8][Interior Product] Let ω be a differential k-form

and X be a vector field on a manifold M . Define the interior product ιXω

(sometimes called a contraction of X and ω , and written Xyω )

ιX = Λk(M)→ Λk−1(M)

by

ιXω(Y1, Y2, . . . , Yk−1) = ω(X, Y1, Y2, . . . , Yk−1).

The interior product of differential forms has the following properties.

Proposition 2.7. [8] Let ω be a differential k-form defined on a manifold

M and α1, α2 be two differential s-forms on M , and X, Y be two vector fields

on M , then :

i. ιXω is a differential (k − 1)-form on M .

ii. ιX is linear map, that is, for any real numbers c1, c2,

ιX(c1α1 + c2α2) = c1ιXα1 + c2ιXα2.

iii.

ιY ιXω = −ιXιY ω.

iv. The interior product of the exterior product,

ιX(ω ∧ α1) = ιXω ∧ α1 + (−1)kω ∧ ιXα1

Definition 2.25. Let M be a differentiable manifold. A one-parameter

group of transformations, ϕt(x), on M , is a differentiable map from M × R

onto M such that ϕ0(x) = x and ϕs(ϕt(x)) = ϕs+t(x) for all x ∈M, t, s ∈ R.

The infinitesimal generator of ϕ is the vector fieldX such thatX = ϕt(x)′|t=0.
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Definition 2.26. [5] Let X be a vector field on a manifold M and ω be a

differential k-form defined on M . The Lie derivative of ω with respect to X

is the object whose value at x ∈M is:

LXω = lim
t→0

φ∗t (ω|φt(x))− ω|x
t

=
d

dt

∣∣∣∣
t=0

φ∗t (ω|φt(x))

where φt(x) is the flow of the vector field X and φ∗t (x) refers to the pull-back

of φt(x), defined by

φ∗t (ω) = ω(φt(x)).

Proposition 2.8. [5] Let X be a vector field on a manifold M and ω, ϕ

be two differential k-forms defined on M , then the Lie derivative has the

following properties:

i. LXω is of the same degree as ω.

ii. The linearity of Lie derivative, that is, for any real numbers c1 and c2,

LX(c1ω + c2ϕ) = c1LXω + c2LXϕ.

iii. Commutation with the differential,

dLXω = LXdω.

iv. The Lie derivative of the exterior product,

LX(ω ∧ ϕ) = LXω ∧ ϕ+ ω ∧ LXϕ.

v. LXω = ιXdω + d(ιXω).

where ι is the interior product between ω and X and ”d” is the exterior

derivative.
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Definition 2.27. [5] Given a differential 1-form ω =
n∑
i=1

ωidx
i defined on a

cone C ⊂ Rn, we say that the ω is k-homogeneous if the functions ωi, i =

1, . . . , n are k-homogeneous for all x ∈ C.

Theorem 2.9. [5] The differential form ω =
n∑
i=1

ωidx
i is k-homogeneous if

and only if

LXω = (k + 1)ω

where X =
n∑
i=1

xi ∂
∂xi
∈ TRn.

Proof. Let ω and X be defined as above, and using the property v.; that is,

LXω = ιXdω + d(ιXω).

We calculate each term on the right hand side.

Since,

dω =
n∑

i,j=1

∂ωi
∂xj

dxj ∧ dxi.

Then,

ιXdω =
n∑

i,j=1

∂ωi
∂xj

xjdxi −
n∑

i,j=1

∂ωi
∂xj

xidxj. (2.2)

Similarly, we have

ιXω =
n∑
i=1

ωi(x)xi.

Then,

d(ιXω) =
n∑

i,j=1

∂ωi
∂xj

xidxj +
n∑
i=1

ωidx
i. (2.3)



2.8 Interior Product and Lie Derivative 26

From (3.3) and (3.4), we get

LXω =
n∑

i,j=1

∂ωi
∂xj

xjdxi −
n∑

i,j=1

∂ωi
∂xj

xidxj +
n∑

i,j=1

∂ωi
∂xj

xidxj +
n∑
i=1

ωidx
i

=
n∑

i,j=1

∂ωi
∂xj

xjdxi +
n∑
i=1

ωidx
i.

By Euler’s Theorem, we conculde that ω(x) is k-homogeneous if and only if

LXω = (k + 1)ω.

This completes the proof.

Corollary 2.10. [5] If ω is k-homogeneous differential 1-form, then

i. LXω ∧ ω = 0.

ii. LX(ω ∧ dω) = 2(k + 1)ω ∧ dω.

iii. LXdω = (k + 1)dω.

Theorem 2.11. [5] Let ω be a C1 differential m-form. Then ω is k-

homogeneous if and only if

LXω = (k +m)ω.

let ω be a differential 1-form. Define a sequence of differential forms:

ω1 = ω, ω2 = dω, ω3 = ω ∧ dω, ω4 = dω ∧ dω

ω5 = ω ∧ dω ∧ dω, . . . , etc.

Definition 2.28. [5] The rank of a differential 1-form ω at a point x in

a manifold M is the integer 0 ≤ r(x) ≤ n such that ωi(x) 6= 0 for i ≤ r,

whereas ωi(x) = 0 for all i > r. Moreover, ω is called regular if r(x) is fixed

for all x.
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Theorem 2.12. [5][Darboux] Suppose ω is a differential 1-form of con-

stant rank r on a manifold M . Then, there exist local coordinates x =

(x1, x2, . . . , xn) such that ω has the canonical form:

ω =

x
1dx2 + . . .+ x2s−1dx2s, r = 2s

x1dx2 + . . .+ x2s−1dx2s + dx2s+1, r = 2s+ 1

Definition 2.29. [16] A subring I which is a subset of the set of k-forms

on a manifold M ; Λk(M), is called ideal if:

a) α ∈ I implies α ∧ β ∈ I for all β ∈ Λk(M).

b) α ∈ I implies that all its components in Λk(M) are contained in I.

Definition 2.30. [16][Differential Ideal] An ideal I ⊂ Λk(M) satisfying

dI ⊂ I is called a differential ideal, where

dI = {dα|α ∈ I}.

Definition 2.31. [16][Forbenius Condition ] Let I be a differential

ideal having as generators the linear forms α1, . . . , αn−r of degree one, the

condition that I is closed means

(F) dαi ≡ 0 mod α1, . . . , αn−r, 1 ≤ i ≤ n− r.

The condition (F) is called the Forbenius condition.

Theorem 2.13. [15][Forbenius Theorem] Let I be a differential ideal

having as generators the linear forms α1, . . . , αn−r of degree one, so that the

Forbenius condition is satisfied. In a sufficiently small neighborhood there is

a coordinate system y1, . . . , yn such that I is generated by dyr+1, . . . , dyn.

The proof can be found in [15].



Chapter 3
Convex Darboux Theorem

There are many applications in which we need to write differential forms

as a linear combination of gradients. In [15], Darboux found the necessary

and sufficient condition that guarantees this combination in a neighborhood;

U , of x̄ in Rn. However, some economic applications require an additional

restriction on the coefficients to be positive functions and the coordinates to

be convex functions. There were several attempts to find a necessary and

sufficient condition that guarantees the positivity of the coefficients and the

convexity of the coordinates.

In [9], Chiappori and Ekeland gave the result when a 1-form ω is analytic.

Later on, in [21], Zakalyukin gave the result when ω is smooth. In [14], it

has been shown that their results are false by Ekeland and Nirenberg by

giving a counterexample and they found a necessary and sufficient condition

that guarantees the positivity of the coefficients and the convexity of the

coordinates.

28
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3.1 Introduction

Let ω =
n∑
i=1

ωidx
i be a smooth differential 1-form defined on a neighbor-

hood; U , of the origin in Rn. The problem of finding necessary and sufficient

condition to decompose the smooth differential 1-form ω defined on U into

the sum

ω = f 1dg1 + . . .+ fkdgk (3.1)

has been solved by Ekeland and Nirenberg using Exterior Differential Calcu-

lus, where the f l are positive functions and the gl are strictly convex func-

tions.

By a classic result in exterior differential calculus; Darboux Theorem, if

ω has rank 2k; that is,

ω ∧ (dω)k−1 6= 0 and ω ∧ (dω)k = 0 on U

then (3.1) holds. If ω satisfies (3.1), then

dω =
k∑
l=1

df l ∧ dgl

and

(dω)k = k!df 1 ∧ dg1 ∧ df 2 ∧ dg2 . . . ∧ dfk ∧ dgk

Hence,

ω ∧ (dω)k = 0

But, Darboux Theorem does not give any guarantee for positiveness of the

coefficients and convexity of the coordinates. In [9], Chiappori and Eke-

land found a necessary and sufficient condition to decompose the analytical
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differential 1-form ω defined on a neighborhood; U , of origin into the sum

ω =
k∑
l=1

f ldgl

where the coefficients are positive functions and the coordinates are convex

functions.

Chiappori and Ekeland condition: There is some neighborhood

of the origin where the matrix (ωi,j) is the sum of two matrices, a positive

definite one and another one of rank k, where

ωi,j =
∂ωi
∂xj

.

In [21], Zakalyukin was interested in finding a necessary and sufficient

condition to decompose a smooth (non-analytical) differential 1-form ω de-

fined on a neighborhood; U , of the origin into the sum

ω =
k∑
l=1

f ldgl

where the coefficients f l are positive functions and the coordinates gl are

convex functions. He introducedthe space A2(ω) of all tangent vector fields

ξ such that

ιξω = 0.

ι(ξ,η)dω = 0, ∀η.

Zakalyukin Condition: In addition to Chiappori and Ekeland condition,

he requires the following condition: There is some neighborhood of the origin

where the matrix (ωi,j) + (ωj,i) is positive definite on A2(ω).

In [14], Ekeland and Nirenberg found a counterexample of the previous

results.
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Example 3.1. [Counterexample of Chiappori and Ekeland condi-

tion]

Consider R4 with coordinates x1, x2, x3, x4 and the differential 1-form

ω = (1 + x1 + x4)dx1 + x2dx2 + (x2 + x3)dx3.

Then,

ω ∧ dω = ω ∧
(
dx4 ∧ dx1 + dx2 ∧ dx3

)
= (1 + x1 + x4)dx1 ∧ dx2 ∧ dx3 + x2dx2 ∧ dx4 ∧ dx1 + (x2 + x3)dx3 ∧ dx4 ∧ dx1

6= 0

and

ω ∧ (dω)2 = 0.

Hence, k = 2. Moreover,

ωi,j =


1 0 0 1

0 1 0 0

0 1 1 0

0 0 0 0

 = I +


0 0 0 1

0 0 0 0

0 1 0 0

0 0 0 −1


Thus, we can write ωi,j as the sum of a positive definite matrix and a matrix

of rank 2, which means the Chiappori and Ekeland condition holds. But, the

problem has no solution. Assume otherwise, there exist smooth functions

f 1, f 2, g1, g2 such that

ω = f 1dg1 + f 2dg2.

where f 1, f 2 are positive functions and g1, g2 are strictly convex functions.

Then g1 satisfies:

dg1 ∧ ω ∧ dω = dg1 ∧ f 2dg2 ∧ dω = 0. (3.2)
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On the other hand:

ω∧dω = (1+x1+x4)dx1∧dx2∧dx3+x2dx2∧dx4∧dx1+(x2+x3)dx3∧dx4∧dx1

Substituting into equation (3.2), we get

−(1 + x1 + x4)
∂g1

∂x4
+ x2 ∂g1

∂x3
− (x2 + x3)

∂g1

∂x2
= 0.

In particular, on the plane x2 = x3 = 0, we have

(1 + x1 + x4)
∂g1

∂x4
= 0.

So, ∂g1
∂x4

= 0 on the plane x2 = x3 = 0. Hence, g1 cannot be strictly convex.

Example 3.2. [Counterexample of Zakalyukin condition]

Consider R5 with coordinates x1, x2, x3, x4, x5 and the differential 1-form

ω = −x2dx1 + x1dx2 + (1 + x3)dx3 + (1 + x4)dx4 + (1 + x5)dx5.

Then,

ω ∧ dω = 2
(
dx1 ∧ dx2

)
∧
(
(1 + x3)dx3 + (1 + x4)dx4 + (1 + x5)dx5

)
6= 0

and

ω ∧ (dω)2 = 0.

Hence, k = 2. Darboux condition holds. Moreover,

ωi,j =



0 −1 0 0 0

1 0 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


= I +



−1 −1 0 0 0

1 −1 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0
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So, Chiappori and Ekeland condition holds as well. At the origin, ξ ∈ A2(ω)

means that

〈ω|ξ〉 = 0 =⇒ ξ3 + ξ4 + ξ5 = 0.

〈dω|(ξ, η)〉 = 0 =⇒ 2(ξ1η2 − ξ2η1) = 0, ∀(η1, η2).

So, (ξ1η2 − ξ2η1) = 0, ∀(η1, η2) means that ξ1 = ξ2 = 0. Thus, the matrix

ωi,j + ωj,i =



0 −1 0 0 0

1 0 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


+



0 1 0 0 0

−1 0 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


=



0 0 0 0 0

0 0 0 0 0

0 0 2 0 0

0 0 0 2 0

0 0 0 0 2


is positive definite on the space A2(ω) = {(ξ1, ξ2, ξ3, ξ4, ξ5)|ξ1 = ξ2 = 0}. So

the Zakalyukin condition is satisfied also.

We claim that ω cannot be written in the form:

ω = adu+ bdv

where a and b are positive functions and u and v are convex functions. As-

sume otherwise. In particular, on the plane x3 = x4 = x5 = 0, we have:

a
∂u

∂x1
+ b

∂v

∂x1
= −x2 (3.3)

a
∂u

∂x2
+ b

∂v

∂x2
= x1 (3.4)

We assume that u(0) = v(0) = 0, then the Taylor expansion to u, v near

the origin in the plane (x1, x2)

u = c1x
1 + c2x

2 +Q1(x1, x2) + o(||x||2).
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v = d1x
1 + d2x

2 +Q2(x1, x2) + o(||x||2).

Respectively, where Q1(x1, x2), Q2(x1, x2) are positive definite quadratic

forms. Then,

∂u

∂x1
= c1 +

∂Q1

∂x1
+ o(||x||2),

∂u

∂x2
= c2 +

∂Q1

∂x2
+ o(||x||2). (3.5)

∂v

∂x1
= d1 +

∂Q2

∂x1
+ o(||x||2),

∂v

∂x2
= d2 +

∂Q2

∂x2
+ o(||x||2). (3.6)

From equations (3.3) and (3.4), we get:

a

(
∂u

∂x2

∂v

∂x1
− ∂u

∂x1

∂v

∂x2

)
= x1 ∂v

∂x1
+x2 ∂v

∂x2
= d1x

1+d2x
2+2Q2(x1, x2)+o(||x||2)

(3.7)

b

(
∂u

∂x1

∂v

∂x2
− ∂u

∂x2

∂v

∂x1

)
= x1 ∂u

∂x1
+x2 ∂u

∂x2
= c1x

1+c2x
2+2Q1(x1, x2)+o(||x||2)

(3.8)

At the origin, the right hand sides vanish, and since a and b are positive

functions, we must have

∂u

∂x2

∂v

∂x1
− ∂u

∂x1

∂v

∂x2
= c2d1 − c1d2 = 0

This implies that the vectors (c1, c2) and (d1, d2) are parallel. One or both

may vanish, but in any case we can choose (x1, x2) 6= 0 near the origin so

that

c1x
1 + c2x

2 = 0 = d1x
1 + d2x

2.

For such a choice of (x1, x2), the right hand sides of equations (3.7) and (3.8)

are positive. But, the left hand sides have opposite signs.
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3.2 Ekeland-Nirenberg Theorem

In this section, we discuss the Ekeland-Nirenberg Theorem which gives

an answer to the following problem.

Problem: Under what conditions can we represent a smooth differential 1-

form ω =
n∑
i=1

ωidx
i defined on a neighborhood; U , of the origin in Rn, in the

form:

ω =
k∑
l=1

f ldgl (3.9)

where the f l are positive functions and the gl are strictly convex functions?

In [14], the previous problem was solved by Ekeland and Nirenberg and gave

the following necessay and sufficient condition.

Ekeland-Nirenberg Condition: Consider the subspace of the space of all

1-forms α defined as follow:

I = {α|α ∧ ω ∧ (dω)k−1 ≡ 0}.

There is a k-dimensional subspace V of I(0), containing ω(0), such that on

N = V ⊥, the matrix (ωi,j)(0) is symmetric and positive definite.

The Ekeland-Nirenberg condition requires that :

ξT (ωi,j)(0)η = ηT (ωi,j)(0)ξ, ∀ξ, η ∈ N.

ξT (ωi,j)(0)ξ > 0, ∀0 6= ξ ∈ N.

Where N is the subspace of vectors ξ such that

ιξα = 0, ∀α ∈ V.

Using this condition, Ekeland-Nirenberg stated the following theorem.

Theorem 3.1 (Ekeland-Nirenberg Theorem). Assume ω is a smooth dif-
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ferential 1-form satisfying ω ∧ (dω)k−1 6= 0 on a neighborhood; U , of the

origin. Then, ω can be decomposed into the sum ω =
∑k

l=1 f
ldgl, where

the f l are positive functions and the gl are convex functions in some neigh-

borhood; V ⊂ U , of the origin if and only if ω ∧ (dω)k = 0 on U and the

Ekeland-Nirenberg condition is satisfied at the origin.

In the following we provide an example.

Example 3.3. Consider R3 with coordinate system x, y, z and the differential

1-form

ω = (1 + y)dx+ (1 + x)dy + dz.

Then we have

ω ∧ dω = 0

and

(ωi,j)(0) =


0 1 0

1 0 0

0 0 0

 ,

We define the subspace I of the space of all 1-forms α as follows:

I = {α|α ∧ ω = 0}.

So, I has dimension one and ω is in I, hence

I(0) = {ω(0)}.

The Ekeland-Nirenberg condition says that there exists a one dimensional

subspace V ⊂ I(0) such that the matrix (ωi,j)(0) is positive definite on V ⊥.

Here I(0) is one dimensional, that means V = I(0) = {ω(0)} = {dx(0) +

dy(0) + dz(0)}.

{dx(0) + dy(0) + dz(0)}⊥ = {(ξ1, ξ2, ξ3)|ξ1 + ξ2 + ξ3 = 0}.
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Positive definiteness means

(
ξ1 ξ2 ξ3

)
0 1 0

1 0 0

0 0 0



ξ1

ξ2

ξ3

 = 2ξ1ξ2 > 0

But, the matrix ωi,j(0) is not positive definite on V ⊥, since the vector

(1,−1, 0) is in V ⊥. Thus, ω cannot be written as ω = du where the function

u is strictly convex.

3.3 Proof of Convex Darboux Theorem

As mentioned before, the goal of the convex Darboux theorem is to solve

the following problem.

Problem: under what conditions can we represent a smooth differential 1-

form ω =
n∑
i=1

ωidx
i defined on a neighborhood; U , of the origin in Rn, in the

form:

ω =
k∑
l=1

f ldgl (3.10)

where the f l are positive functions and the gl are strictly convex functions?

Theorem 3.2 ( Convex Darboux Theorem). Assume ω is a smooth

differential 1-form satisfying ω ∧ (dω)k−1 6= 0 on a neighborhood; U , of the

origin. Then, ω can be decomposed into the sum ω =
k∑
l=1

f ldgl, where the

f l are positive functions and the gl are strictly convex functions in some

neighborhood; V ⊂ U , of the origin if and only if ω∧ (dω)k = 0 on U and the

Ekeland-Nirenberg condition is satisfied at the origin.
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3.3.1 Proof of Necessity

Let ω(x) be a smooth differential 1-form defined on Rn, satisfying ω ∧

(dω)k−1 6= 0 on U . Assume our problem has a solution in some neighborhood;

V ⊂ U of the origin; that is, we can repersent ω(x) in the form:

ω =
k∑
l=1

f ldgl (3.11)

in V ⊂ U , where the f l are positive functions and the gl are strictly convex

functions. Then,

dω =
k∑
l=1

df l ∧ dgl

and

(dω)k = k!df1 ∧ dg1 ∧ . . . ∧ dfk ∧ dgk

Hence,

ω ∧ (dω)k = 0.

It remains to show that the Ekeland-Nirenberg condition holds at the

origin. The differential 1-forms dg1, dg2, . . . , dgk are linearly independent in

a neighborhood of the origin. If not, then ω(0) can be expressed as a linear

combination of k− 1 of them, which is a contradiction with ω ∧ (dω)k−1 6= 0

at the origin.

As we defined the subset I before, dgl ∈ I, ∀l = 1, 2, . . . , k. Since

ω ∧ (dω)k−1 = Θ ∧ dg1 ∧ dg2 ∧ . . . ∧ dgk

for some (k − 1)-form Θ. Thus,

dgl ∧ ω ∧ (dω)k−1 = 0, ∀l = 1, 2, . . . , k.

Let V be the k-dimensional subspace of I(0) spanned by dg1, dg2 . . . , dgk.
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Thus, ω(0) =
k∑
l=1

f l(0)dgl(0) lies in V . Differentiating (3.11), we find

ωi,j =
k∑
l=1

∂f l

∂xj
∂gl
∂xi

+
k∑
l=1

f l
∂2gl
∂xi∂xj

.

Thus, for every ξ, η ∈ N = V ⊥,

n∑
i,j=1

ωi,jξ
iηj =

k∑
l=1

n∑
i,j=1

∂f l

∂xj
∂gl
∂xi

ξiηj +
k∑
l=1

n∑
i,j=1

f l
∂2gl
∂xi∂xj

ξiηj

=
k∑
l=1

n∑
i,j=1

f l
∂2gl
∂xi∂xj

ξiηj.

Since
∂2gl
∂xi∂xj

=
∂2gl
∂xj∂xi

, ∀l = 1, 1, . . . , k.

the right-hand side is symmetric in ξ and η, therefore the left-hand side is

also symmetric. Thus, ωi,j(0) is symmetric on N . Furthermore, taking ξ = η,

by the assumption that the gl are strictly convex functions on Rn, we get

n∑
i,j=1

∂2gl
dxidxj

ξiξj > 0, ∀l = 1, 2, . . . , k, and 0 6= ξ ∈ N.

and the f l are positive functions by the assumption. So,
n∑

i,j=1

ωi,jξ
iξj is a

positive number for all 0 6= ξ ∈ N . Hence, ωi,j(0) is positive definite on N .

3.3.2 Proof of Sufficiency

Firstly, we are going to introduce some algebraic results that will be

needed.

Lemma 3.3. [15] Let α1, . . . , αp+1 be linearly independent 1-forms and Ω a
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2-form such that

α1 ∧ . . . ∧ αp+1 ∧ Ωq = 0

for some integers p and q. Then,

α1 ∧ . . . ∧ αp ∧ Ωq+1 = 0.

Lemma 3.4. [15] Let α1, . . . , αl−1 be 1-forms such that α1, . . . , αl−1, ω are

linearly independent and satisfy

α1 ∧ . . . ∧ αl−1 ∧ ω ∧ (dω)k−l+1 ≡ 0

Define Jl to be the set of all 1-forms α such that

α ∧ α1 ∧ . . . ∧ αl−1 ∧ ω ∧ (dω)k−l ≡ 0

Then:

(i) Jl is spanned by 2k − l 1-forms τ1, . . . , τ2k−l.

(ii) If Φ is a 2-form satisfying

Φ ∧ α1 ∧ . . . ∧ αl−1 ∧ ω ∧ (dω)k−l ≡ 0

then there exist 1-forms µi such that

Φ =
2k−l∑
i=1

µi ∧ τi

Remark 3.1. [14] Let I be a subset of the space of all 1-forms α defined

by:

I = {α|α ∧ ω ∧ (dω)k−1 = 0}

Then, it generates a differential ideal.
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Proof. We claim that I generates a differential ideal. This is equivalent to

the Forbenius condition: if α1, α2, . . . , α2k−1 span I, then there are 1-forms

µij such that

dαi =
2k−1∑
j=1

µij ∧ αj, ∀1 ≤ i ≤ 2k − 1. (3.12)

To verify the equation (3.12), let a 1-form α belong to I, then

α ∧ ω ∧ (dω)k−1 = 0. (3.13)

We apply the exterior derivative to equation (3.13), we get

dα ∧ ω ∧ (dω)k−1 − α ∧ (dω)k = 0

By lemma 3.3, α ∧ (dω)k = 0 . So,

dα ∧ ω ∧ (dω)k−1 = α ∧ (dω)k = 0.

By lemma 3.4 (ii), we obtain equation (3.12).

Now we are ready to prove the sufficient condition: Assume the

Ekeland-Nirenberg condition is satisfied at the origin. Without loss of gen-

erality, we assume that at the origin, ω(0) = dx1, and the subspace V is

spanned by dx1, dx2, . . . , dxk. Thus, N = V ⊥ consists of all tangent vectors

ξ, at the origin, such that

ξ1 = ξ2 = . . . = ξk = 0

The symmetry of ωi,j(0) on the subspace N implies that:

ωi,j(0) = ωj,i(0), ∀i, j > k

Thus,

dω(0) = dx1 ∧ α1 + τ
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with τ = dx2 ∧ α2 + . . .+ dxk ∧ αk, where each αi involves only the dxj with

j > i, and so again at the origin:

ω ∧ (dω)k−l = ω ∧ τ k−l, with τ k = 0.

We need the following lemma in the proof:

Lemma 3.5. [14] At the origin, if β1, . . . , βl are any l linear forms in V ,

then

β1 ∧ . . . ∧ βl ∧ ω ∧ (dω)k−l = 0.

Proof. Since β1, . . . , βl are 1-forms in V , then for all i = 1, 2, . . . , l

βi =
k∑
j=1

βijdx
j = βi1dx

1 + β′i

So,

β1 ∧ . . . ∧ βl ∧ ω ∧ (dω)k−l = β′1 ∧ . . . ∧ β′l ∧ ω ∧ (dω)k−l

= β′1 ∧ . . . ∧ β′l ∧ ω ∧ (τ)k−l.

By the definition of τ, we know that its compontents involve (k− l) products

of dx2, . . . , dxk and each compontent in β′1 ∧ . . . ∧ β′l involves l products of

dx2, . . . , dxk.

Thus, each compontent in the product of the two involves k 1-forms of

dx2, . . . , dxk, and hence each compontent is equal to zero.

We are ready to start constructing g1, g2, . . . , gk.

Construction of g1:

Define a subset I of the space of all 1-forms α by:

I = {α|α ∧ ω ∧ (dω)k−1 = 0}
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Since I has dimension 2k−1 and satisfies the Forbenius condition, by Forbe-

nuis Theorem; there exist 2k − 1 functions u1, u2, . . . , u2k−1, the differentials

of which span I. We may choose u1, u2, . . . , uk such that, at the origin:

dui(0) = dxi, ∀i = 1, . . . , k

uj(0) = 0, ∀j.

Since ω ∈ I, we may write:

ω =
2k−1∑
l=1

aldul. (3.14)

with a1(0) = 1 and al(0) = 0 for all l > 1. We will prove now that g1 is

strictly convex. So,

ωi =
2k−1∑
l=1

al
∂ul
∂xi

and

ωi,j(0) =
2k−1∑
l=1

∂al

∂xj
(0)

∂ul
∂xi

(0) +
2k−1∑
l=1

al(0)
∂2ul
∂xi∂xj

(0)

=
2k−1∑
l=1

∂al

∂xj
(0)

∂ul
∂xi

(0) +
∂2u1

∂xi∂xj
(0).

Since the Ekeland-Nirenberg condition is satisfied at the origin, then ωi,j(0)

is positive definite on N . But I(0)⊥ ⊂ V ⊥ = N , then ωi,j(0) is positive

definite on I(0)⊥. So, for each ξ ∈ I⊥(0), we have

n∑
i=1

∂ul(0)

∂xi
ξi = 0, l = l, . . . , 2k − 1.

Then,
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n∑
i,j=1

ωi,j(0)ξiξj =
2k−1∑
l=1

n∑
i,j=1

∂al(0)

∂xj
∂ul(0)

∂xi
ξiξj +

n∑
i,j=1

∂2u1(0)

∂xi∂xj
ξiξj

=
n∑

i,j=1

∂2u1(0)

∂xi∂xj
ξiξj.

We claim that there exists c > 0, such that

c‖ξ‖2 ≤
n∑

i,j=1

ωi,j(0)ξiξj =
n∑

i,j=1

∂2u1(0)

∂xi∂xj
ξiξj, ∀ξ ∈ I⊥(0)

we will prove the existence of the real number c > 0. Note that positive def-

initeness of ωi,j(0) means:

n∑
i,j=1

ωi,j(0)ξiξj > 0, on N

.

Define E to be the unit sphere in N , and consider the following function

h : E → R

ξ →
n∑

i,j=1

ωi,j(0)ξiξj.

h is a continuous, positive function and E is a compact set, then the minimum

of this function is achieved and it is a positive number, which we call c.

Thus, for each ξ ∈ N and ξ/‖ξ‖ ∈ E

c ≤
n∑

i,j=1

ωi,j(0)
ξi

‖ξ‖
ξj

‖ξ‖
.
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Set

g1 = u1 + ε1u2 +K

2k−1∑
l=1

u2
l

with ε1 > 0 small and K large.

It remains to show that g1 satisfies the desired properties.

i. Since dg1 is a combination of du1, . . . , du2k−1, then dg1 ∈ I. Thus

dg1 ∧ ω ∧ (dω)k−1 = 0.

ii. The g1 is strictly convex function at the origin. Since at the origin,

n∑
i,j=1

∂2g1(0)

∂xi∂xj
ξiξj =

n∑
i,j=1

∂2u1(0)

∂xi∂xj
ξiξj+ε1

n∑
i,j=1

∂2u2(0)

∂xi∂xj
ξiξj+2K

2k−1∑
l=1

n∑
i=1

(
∂ul(0)

∂xi
ξi)2.

We consider two cases:

(a) For ξ ∈ I⊥(0), we have

n∑
i,j=1

∂2g1(0)

∂xi∂xj
ξiξj =

n∑
i,j=1

∂2u1(0)

∂xi∂xj
ξiξj + ε1

n∑
i,j=1

∂2u2(0)

∂xi∂xj
ξiξj ≥ c

2
‖ξ‖2

for small ε1.

(b) For ξ belongs to complementary subspace of I⊥(0), then

n∑
i,j=1

∂2g1(0)

∂xi∂xj
ξiξj =

n∑
i,j=1

∂2u1(0)

∂xi∂xj
ξiξj+ε1

n∑
i,j=1

∂2u2(0)

∂xi∂xj
ξiξj+2K

2k−1∑
l=1

n∑
i=1

(
∂ul(0)

∂xi
ξi)2

≥ c

2
||ξ||2, c > 0. For K large enough.

Finally,

dg1 = du1 + ε1du2 + 2K
2k−1∑
l=1

uldul

At the origin,

dg1(0) = dx1 + ε1dx
2.
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Construction of gl, for 1 ≤ l ≤ k − 1: We now argue by induction.

Suppose we have constructed the functions

g1, g2, . . . , gl−1

for l ≤ k − 1, and positive numbers

ε1, ε2, . . . , εl−1

satisfying recursively,

dg1 ∧ ω ∧ (dω)k−1 ≡ 0,

dg2 ∧ dg1 ∧ ω ∧ (dω)k−2 ≡ 0,

...

dgl−1 ∧ dgl−2 ∧ . . . ∧ dg2 ∧ dg1 ∧ ω ∧ (dω)k−l+1 ≡ 0.

and at the origin,

dgi(0) = dx1 − εidxi + εidx
i+1

for all i = 2, 3, . . . , l − 1, while for i = 1,

dg1(0) = dx1 + ε1dx
2.

Now, we construct gl with similar properties. Define a subset Il of the space

of all 1-forms α by:

Il = {α|α ∧ dgl−1 ∧ . . . ∧ d1 ∧ ω ∧ (dω)k−l = 0}

Since Il generates a differential ideal, and has dimension 2k − l, using For-

benius theorem, there exist 2k − l functions u1, u2, . . . , u2k−l spanning Il.

From the definiton of dgi at the origin, then dgi ∈ V for all i = 1, 2, . . . , l−1.



3.3 Proof of Convex Darboux Theorem 47

Let α be a 1-form in V , then by lemma 3.5 we get at the origin

α ∧ dg1 ∧ dg2 ∧ . . . ∧ dgl−1 ∧ ω ∧ (dω)k−l = 0

that means α ∈ Il(0). Thus, V ⊂ Il(0) . We may choose u1, u2, . . . , uk such

that, at the origin:

dui(0) = dxi, ∀i = 1, . . . , k

uj(0) = 0, ∀j.

Again,

ω =
2k−l∑
l=1

aldul. (3.15)

with a1(0) = 1 and al(0) = 0 for all l > 1. So,

ωi =
2k−l∑
l=1

al
∂ul
∂xi

and

ωi,j(0) =
2k−l∑
l=1

∂al

∂xj
(0)

∂ul
∂xi

(0) +
2k−l∑
l=1

al(0)
∂2ul
∂xi∂xj

(0)

=
2k−l∑
l=1

∂al

∂xj
(0)

∂ul
∂xi

(0) +
∂2u1

∂xi∂xj
(0).

By assumption, ωi,j(0) is positive definite on N . But Il(0)⊥ ⊂ V ⊥ = N , then

ωi,j(0) is positive definite on I(0)⊥. So, for each ξ ∈ I⊥l (0), we have

n∑
i=1

∂ul(0)

∂xi
ξi = 0, l = l, . . . , 2k − l.

Then,
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n∑
i,j=1

ωi,j(0)ξiξj =
2k−l∑
l=1

n∑
i,j=1

∂al(0)

∂xj
∂ul(0)

∂xi
ξiξj +

n∑
i,j=1

∂2u1(0)

∂xi∂xj
ξiξj

=
n∑

i,j=1

∂2u1(0)

∂xi∂xj
ξiξj.

By our assumption on V , it follows that, for some c > 0, we have

n∑
i,j=1

ωi,j(0)ξiξj =
n∑

i,j=1

∂2u1(0)

∂xi∂xj
ξiξj ≥ c||ξ||2, ∀ξ ∈ Il(0)⊥.

We now define

gl = u1 − εlul + εlul+1 +K
2k−l∑
l=1

(ul)
2.

i. Since dgl is a combination of du1, . . . , du2k−l, then dgl ∈ Il. Thus

dgl ∧ dgl−1 ∧ . . . ∧ dg1 ∧ ω ∧ (dω)k−l = 0.

ii. With similar discussion as before, the gl is strictly convex function at

the origin. Since at the origin, we find that

n∑
i,j=1

∂2gl(0)

∂xi∂xj
ξiξj ≥ c

2
||ξ||2

Hence, at the origin

dgl(0) = dx1 − εldxl + εldx
l+1.

Construction of gk:

We have constructed g1, g2, . . . , gk−1 with convex property, finally we con-

struct gk. Define a subset Ik of the space of all 1-forms α by:

Ik = {α|α ∧ dgk−1 ∧ . . . ∧ d1 ∧ ω = 0}
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Since Ik generates a differential ideal, and has dimension k, by Forbenuis

Theorem; there exist k functions w1, w2, . . . , wk, the differentials of which

span Ik. We may choose w1, w2, . . . , wk such that, at the origin:

dwi(0) = dxi, ∀i = 1, . . . , k

wj(0) = 0, ∀j.

Since ω ∈ Ik, we may write:

ω =
k∑
l=1

aldwl (3.16)

with a1(0) = 1 and al(0) = 0 for all l > 1.

We now set

gk = w1 − εkwk +K
k∑
l=1

(wl)
2.

As before, by assumption, ωi,j(0) is positive definite on N = V ⊥ = I⊥k . Then

for small εk > 0 and large K, we get

n∑
i,j=1

∂2gk(0)

∂xi∂xj
ξiξj ≥ c

2
||ξ||2.

Hence, at the origin

dgk(0) = dx1 − εkdxk.

To complete the proof of the convex Darboux theorem, we must show

that in the repersentation

ω =
k∑
l=1

f ldgl

all the f l are positive functions at the origin.

Remark 3.2. At the origin, the dgl(0) are independent, so the f l(0) are
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unique.

But at the origin,

ω(0) = dx1

dg1(0) = dx1 + ε1dx
2

dg2(0) = dx1 − ε2dx2 + ε2dx
3

...

dgk−1(0) = dx1 − εk−1dx
k−1 + εk−1dx

k

dgk(0) = dx1 − εkdxk.

Then:

1

ε1
dg1(0) =

1

ε1
dx1 + dx2

1

ε2
dg2(0) =

1

ε2
dx1 − dx2 + dx3

. . .

1

εk−1

dgk−1(0) =
1

εk−1

dx1 − dxk−1 + dxk

1

εk
dgk(0) =

1

εk
dx1 − εkdxk.

Summing up, we get

k∑
i=1

1

εi
dgi(0) = (

k∑
i=1

1

εi
)dx1

which gives the desired decompostion

ω(0) =
k∑
l=1

f l(0)dgl(0)
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with

f l(0) =
1

εl
∑k

i=1 εi
> 0.

This concludes the proof.



Chapter 4
Decomposition Of

Homogeneous Differential

Forms

Many economic functions are homogeneous of different degrees. For ex-

ample, the demand function is homogeneous of degree zero when the income

function is homogeneous of degree one. This property is called in economics

” the absence of money illusion”, which means that if you multiply prices and

income by same constant then the consumer is indifferent. In this chapter, we

ask the following question: what are the necessary and sufficient conditions

for a given k-homogeneous differential 1-form ω to be decomposed as

ω =
l∑

i=1

ai(x)dui(x)

where the functions ai(x) are (k + 1)-homogeneous and the functions ui(x)

are 0-homogeneous?

52
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4.1 Integrability Of Homogeneous Differen-

tial Forms

Consider the vector space Rn with coordinate system (x1, x2, . . . , xn).

Define the vector field X in the tangent space of Rn; that is, X ∈ TRn by

X =
n∑
i=1

xi
∂

∂xi

Define the differential 1-form ω by

ω =
n∑
i

ωi(x)dxi

The exterior derivative of ω, denoted by dω, is the 2-form

dω =
n∑

i,j=1

∂ωi
∂xj

dxj ∧ dxi

In the following theorem we study the simplest case in which we find an

L-homogeneous function g(x) such that ω = dg(x).

Theorem 4.1. Let ω be an (L − 1)-homogeneous differential 1-form such

that L 6= 0. Then, there exists an L-homogeneous function g(x) such that

ω = dg(x) if and only if dω = 0. Moreover, g(x) = ιXω
L
.

Proof. Suppose that a given 1-form ω is homogeneous of degree L − 1 and

dω = 0. Using Lie derivative, then,

LXω = Lω

On the other hand, LXω = ιXdω + dιXω. Since dω = 0, then

LXω = dιXω = Lω
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So,

ω =
1

L
dιXω

Since dω = 0, by Poincaré lemma, there exists a function g such that ω = dg.

So we have

ω = d(
1

L
ιXω) = dg

Then, g = 1
L
ιXω. Moreover, the function g is L-homogeneous since ιXdg =

ιXω = Lg(x). Hence, we get the required result.

Corollary 4.2. Let ω be a C2, −1-homogeneous differential 1-form. Then,

there exists a 0-homogeneous function g(x) such that ω = dg(x) if and only

if ιXω = 0 and dω = 0.

Theorem 4.3. Let ω be a C1, k-homogeneous differential m-form such that

m+k 6= 0. Then, dω = 0 if and only if there exists a differential (m−1)-form

σ such that ω = dσ, where σ is given by

σ =
ιXω

k +m
.

Proof. Suppose that a given m-form ω is homogeneous of degree k and dω =

0. Using Lie derivative. Then,

LXω = (k +m)ω

On the other hand, LXω = ιXdω + dιXω. Since dω = 0, then

LXω = dιXω = (k +m)ω

So,

ω =
1

k +m
dιXω.

Since dω = 0, by Poincaré lemma, there exists a differential (m− 1)-form σ
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such that ω = dσ. So we have

ω = d(
1

k +m
ιXω) = dσ

Then, we get an (m− 1)-form σ such that ω = dσ, where σ is given by

σ =
ιXω

k +m

This completes the proof.

We now consider the following lemma.

Lemma 4.4. Let ω be a differential 1-form such that dω = 0. Then, ω is

−1-homogeneous if and only if d(ιXω) = 0.

Proof. Let ω be a differential 1-form such that dω = 0. Then, ω is −1-

homogeneous if and only if LXω = d(ιXω) + ιX(dω) = 0. Hence, ω is −1-

homogeneous if and only if d(ιXω) = 0

In the following we provide some examples.

Example 4.1. Consider the vector space R2 with coordinate system (x, y)

and the differential 1-form

ω =
−2y2

x3
dx+

2y

x2
dy

So, ω is −1-homogeneous and

dω =
−4y

x3
dy ∧ dx+

−4y

x3
dx ∧ dy

= 0.

and

ιXω =
−2y2x

x3
+

2y2

x2

= 0
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where X = x ∂
∂x

+ y ∂
∂y

. Then, there exists a 0-homogeneous function g = y2

x2

such that ω = dg.

Example 4.2. Consider the vector space R2 with coordinate system (x, y)

and the differential 1-form

ω = 3(x− y)2dx− 3(x− y)2dy.

So, ω is 2-homogeneous and

dω = −6(x− y)dy ∧ dx− 6(x− y)dx ∧ dy

= 0.

So, ω is closed on R2. By Poincaré lemma, it is exact. Then, ω = dg where

g(x) = 1
3
ιXω = x3 − 3x2y + 3xy2 − y3.

In the next theorem we answer the following question: given a homoge-

neous differential 1-form ω, do there exist homogeneous functions f(x) and

g(x) such that ω = f(x)dg(x)?

Theorem 4.5. [5] Let ω be a k-homogeneous differential 1-form such that

ω ∧ dω = 0 and ιXω 6= 0. Then, there exists a function g such that ω =

(ιXω)dg.

Proof. Suppose that a given 1-form ω is homogeneous of degree k and ω ∧

dω = 0. We know that LXω = ιXdω + dιXω. Then,

ω ∧ LXω = ω ∧ (ιXdω + d(ιXω)) = ω ∧ (ιXdω) + ω ∧ d(ιXω) (4.1)

Since

ιX(ω ∧ dω) = (ιXω)dω − ω ∧ (ιXdω)
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Substitute the value of ω ∧ (ιXdω) into equation (4.1), we get

ω ∧ LXω = −ιX(ω ∧ dω) + (ιXω)dω + ω ∧ d(ιXω)

Since ω ∧ dω = 0 and ω is k-homogeneous then ω ∧LXω = 0. Then, the last

equation implies that

d((ιXω)−1ω) = 0

By Poincaré lemma, there exists a function g such that ω = (ιXω)dg. The

proof is complete.

Example 4.3. [5] Consider the vector space R3 with coordinate system

(x, y, z) and the differential 1-form

ω = 2z(y + z)dx− 2xzdy + ((y + z)2 − x2 − 2xz)dz.

Then, we notice that ω is 2-homogeneous and

ω ∧ dω = 0.

Then,

ιXω = z((y + z)2 − x2)

where X = x ∂
∂x

+ y ∂
∂y

+ z ∂
∂z
. Then,

ω = (ιXω)dg = (ιXω)d ln

∣∣∣∣z(x+ y + z)

−x+ y + z

∣∣∣∣.
Notice that g(x, y, z) is non-homogeneous function.

Lemma 4.6. [5] If ω is a C1, k-homogeneous differential 1-form such that

ιXω = 0 then ιXdω = (k + 1)ω

Proof. ω is k-homogeneous if and only if LXω = (k + 1)ω. But, we know
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that

LXω = d(ιXω) + ιXdω

Since ιXω = 0. Then, we get

LXω = ιXdω = (k + 1)ω

The proof is complete.

Proposition 4.7. [5] Let ω be a C1 differential 1-form such that ιXω = 0.

Then, ω∧dω = 0 with ω is k-homogeneous if and only if there is a differential

1-form β such that dω = β ∧ ω with ιXβ = k + 1

Proof. Let ω be a C1 differential 1-form such that ιXω = 0. If dω = β ∧ ω

then ω ∧ dω = 0. We take the interior product of both sides of dω = β ∧ ω,

then

ιXdω = (ιXβ)ω − (ιXω)β = (k + 1)ω

So

LXω = d(ιXω) + ιXdω = (k + 1)ω

Then, ω is k-homogeneous. Conversely, if ω∧dω = 0 with ω is k-homogeneous

then there exists a differential 1-form β such that dω = β ∧ ω. Moreover,

ιXdω = (ιXβ)ω − (ιXω)β = (k + 1)ω.

So, ιXβ = k + 1. Hence, we get the required result.

Theorem 4.8. [5] Let ω be a C1, k-homogeneous differential 1-form such

that ιXω = 0 and ω ∧ dω = 0 in a neighborhood U of some point x̄. Then,

there exist a (k + 1)-homogeneous function f and a 0-homogeneous function

g, defiend in a neighborhood; V ⊂ U , such that ω(x) = f(x)dg(x).
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Proof. Suppose that ω ∧ dω = 0. By Darboux theorem, there exist two

functions f and g such that ω(x) = f(x)dg(x). Since ιXω = 0, then

ιXdg = 0.

That is; g is a 0-homogeneous function. We have

dω = df ∧ dg and dg =
ω

f
.

It follows that

dω =
df

f
∧ ω.

Apply the vector field X =
n∑
i=1

xi ∂
∂xi

to both sides of previous equation and

use lemma(4.6), we get

(k + 1)ω = (ιX
df

f
)ω

Thus, ιXdf = (k + 1)f , which means that f(x) is (k + 1)-homogeneous

function. This completes the proof.

Theorem 4.9. [5] Let ω(x) be a C1, k-homogeneous differential 1-form.

Suppose that ω has rank r = 2k in a neighborhood; U , of some point x̄ and

ιXω = 0 for all x ∈ U . Then, there exist 2k functions, a1, . . . , ak, u1, . . . , uk

defined in a neighborhood, V ⊂ U , such that

(a) ω(x) =
k∑
i

ai(x)dui(x).

(b) The functions a1, . . . , ak are (k + 1)-homogeneous and u1, . . . , uk are

0-homogeneous.

Proof. ω(x) has rank 2k in a neighborhood U ; that is,

ω ∧ (dω)k−1 6= 0, ω ∧ (dω)k = 0.

Then, part (a) follows by Darboux theorem. To Prove part (b), we take
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the exterior derivative of both sides of ω(x) =
∑k

i a
i(x)dui(x). We get the

following expression for dω:

dω =
k∑
i=1

dai ∧ dui (4.2)

Assume, without loss of generality, that a1(x) 6= 0 for all x ∈ V . Then

du1 =
1

a1
(ω −

l∑
i=2

aidui)

Substituite the value of du1 in the equation (4.2), we get

dω =
da1

a1
∧ ω +

k∑
i=2

(
dai − da1

a1
ai
)
∧ dui

Applying the vector field X =
n∑
i=1

xi ∂
∂xi

to both sides of this equation and

using lemma(4.6), we get

(k + 1)ω = ιX
da1

a1
ω +

k∑
i=2

ιX

(
dai − da1

a1
ai
)
dui −

k∑
i=2

(
dai − da1

a1
ai
)
ιXdui.

Substituite for ω from part (a) into the previous equation, we get(
ιX
da1

a1
−(k+1)

) k∑
i

ai(x)dui(x)+
k∑
i=2

ιX

(
dai − da1

a1
ai
)
dui−

k∑
i=2

(
dai − da1

a1
ai
)
ιXdui = 0.

Rearranging terms, we get(
ιX

da1

a1(x)
− (k + 1)

)
a1(x)du1 +

k∑
i=2

[
ιX

(
dai − da1

a1(x)
ai(x)

)
+

(
ιX

da1

a1(x)
− (k + 1)

)
ai(x)

]
dui

−
k∑
i=2

(ιXdui)da
i +

1

a1(x)

k∑
i=2

ai(x)(ιXdui)da
1 = 0

Since da1, . . . , dal, du1, . . . , dul are linearly independent differential 1-forms, we

find that

ιXdui(x) = 0 and ιXda
i(x) = (k + 1)ai(x)
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which means that the function ui(x) is 0-homogeneous and the function ai(x) is

(k + 1)-homogeneous for all i = 1, 2, . . . , k. The proof is complete.

More generally, using Darboux theorem and the previous result, we obtain

the following theorem.

Theorem 4.10. [5] Let ω(x) be a C1, k-homogeneous differential 1-form.

The following statments are equivalent:

i. ω has rank r = 2l in a neighborhood, U , of some point x̄ and ιXω = 0

for all x ∈ U .

ii. There exist 2l − 1 linearly independent 1-forms γ, α1, α1, . . . , αl−1,

β1, β2, . . . , βl−1 such that

dω = ω ∧ γ +
k−1∑
i=1

αi ∧ βi

with ιXγ = k + 1, ιXαi = 0 and ιXβ
i = 0 for all i = 1, . . . , l − 1 in U .

iii. There exist 2l functions, a1, . . . , al, u1, . . . , ul defined in a neighborhood,

V ⊂ U , such that

ω =
l∑
i

ai(x)dui(x)

where a1, . . . , al are k + 1-homogeneous and u1, . . . , ul are 0-

homogeneous.

Proof. (a) implies (b). Since (dω)l 6= 0 and ω ∧ (dω)l = 0 then there exist

2l − 1 differential 1-forms γ, α1, α1, . . . , αl−1, β
1, β2, . . . , βl−1 such that

dω = ω ∧ γ +
l−1∑
i=1

αi ∧ βi

We notice that

(dω)l = l!(α1 ∧ β1) ∧ . . . ∧ (αl−1 ∧ βl−1) ∧ ω ∧ γ 6= 0.
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It follows that the 1-form α1, . . . , αl−1, β
1, . . . , βl−1, ω, γ are linearly indepen-

dent. Then,

ιXdω = (ιXγ)ω − (ιXω)γ +
l−1∑
i=1

(
(ιXαi)β

i − (ιXβ
i)αi
)
.

Using the fact that ιXdω = (k + 1)ω, ιXω = 0 and the linear independence

of α1, . . . , αl−1, β
1, . . . , βl−1, ω, γ, it follows that

ιXγ = k + 1, ιXαi = 0, ιXβ
i = 0, ∀i = 1, . . . , l − 1.

(a) implies (c). Conversely follow form Barboux theorem and the homogene-

ity of the functions a1(x), . . . , al(x), u1(x), . . . , ul(x) follows form theorem 4.9.

This complete the proof.

4.2 Why Does Ekeland-Nirenberg Theorem

Fail In The Homogeneous Setting?

Given a smooth differential 1-form defined on a neighborhood; U , of some

point x̄ in Rn

ω =
n∑
i=1

ωidx
i

Under what conditions can we represent a smooth 0-homogeneous differential

1-form ω in the form:

ω =
k∑
l=1

f ldgl (4.3)

on a neighborhood; V ⊂ U , of x̄, where the f l are 1-homogeneous positive

functions and the gl are 0-homogeneous convex (or quasiconvex) functions?

This decomposition is encountered in many economic applications. For exam-

ple, the problems of characterization of excess demand functions, Marshallian
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demand functions when consumers income function w(π) is homogeneous of

degree one and also for household demands in a similar setting. By a classic

result in exterior differential calculus; Darboux Theorem, if ω has rank 2k,

ω ∧ d(ω)k−1 6= 0 and ω ∧ (dω)k = 0 on U .

then (4.3) holds. If ω satisfies (4.3), then

dω =
k∑
l=1

df l ∧ dgl

and

(dω)k = k!df 1 ∧ dg1 ∧ df 2 ∧ dg2 . . . ∧ dfk ∧ dgk

hence,

ω ∧ (dω)k = 0

Darboux theorem does not give any guarantee for positiveness of the coeffi-

cients and convexity of the coordinates. Moreover, the Ekeland and Niren-

berg gave a necessary and sufficient condition for just the positivity of f l and

convexity of gl. Define the vector field X as

X =
n∑
i=1

xi
∂

∂xi

We denote by ιXω, the interior product between the vector field X and the

differential 1-form ω. The Ekeland and Nirenberg introduce the subspace I

defined by

I = {α|α ∧ ω ∧ (dω)k−1 = 0}

Ekeland-Nirenberg Condition: There is a k-dimensional subspace V of

I(0), containing ω(0), such that on N = V ⊥, the matrix ωi,j(0) is symmetric

and positive definite.
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As we mentioned in previous section, if the 0-homogeneous differential

1-form ω can be represented in the form

ω =
k∑
l=1

f ldgl

where the f l are 1-homogeneous functions and the gl are 0-homogeneous

functions. Then,

ιXω =
k∑
l=1

f l
∂gl
∂x1

x1 +
k∑
l=1

f l
∂gl
∂x2

x2 + . . .+
k∑
l=1

f l
∂gl
∂xn

xn

=
n∑
i=1

f 1∂g1

∂xi
xi +

n∑
i=1

f 2∂g2

∂xi
xi + . . .+

n∑
i=1

fk
∂gk
∂xi

xi

The functions gl are 0-homogeneous, Using Euler’s formula we get

n∑
i=1

f l
∂gl
∂xi

xi = f l
n∑
i=1

∂gl
∂xi

xi = 0, ∀l = 1, 2, . . . , k.

So, ιXω = 0. Then, the subspace I is of dimension 2k− 1 and is spanned by

I(x) = {ω, α1, . . . , αk−1, β
1, . . . , βk−1}

Clearly, x ∈ I⊥(x) since ιXω = 0, ιXαi = 0, ιXβ
i = 0 for all i = 1, . . . , k −

1. Therefore, Ekeland-Nirenberg Condition cannot be fulfilled in the

homogeneous setting which is natural since the functions gl, l = 1, . . . , k

cannot be strictly convex.

N = V ⊥ and V ⊂ I(x) =⇒ I⊥(x) ⊂ V ⊥

Hence, The matrix ωi,j cannot be positive definite or negative definite on

N = V ⊥. In the previous section we proved the existence of homogeneous

decomposition, but we need also the additional positivity and convexity con-

ditions.



Chapter 5
Applications

Consider a household that consists of M members (consumers). Each

consumer is characterized by his own utility function

U1, U2, . . . , UM : RN(M+1) → R.

So that Um(y1, y2, . . . , yM , Y ) where ym ∈ RN
+ is member m’s private con-

sumption and Y ∈ RN
+ is the household’s common consumption of public

goods and Um is increasing and strongly concave.

We assume that the decision process within the household is Pareto effi-

cient; that is,

Axiom 1. The outcome of the household decision process is Pareto efficient;

that is, for any price vector, the consumption vector (y1, y2, . . . , yM , Y ) chosen

by the household is such that no other (ŷ1, ŷ2, . . . , ŷM , Ŷ ) in budget set could

make all consumers better off with at least one of them in a strict sense.

The set of Pareto efficient allocations can be characterized by maximizing

a weighted sum of utility functions
M∑
m=1

µm(π)Um(y1, y2, . . . , yM , Y ), where

the price-dependent functions µ1 ≥ 0, µ2 ≥ 0, . . . , µM ≥ 0, are Pareto weights
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that satisfy the normalization condition
M∑
m=1

µm(π) = 1. The µm(π) repre-

sents the power of member m within the household.

The collective demand function is the solution to the utility maximization

problem under the budget constraint πT ξ ≤ w(π), where π ∈ RN
++ is the price

vector and w(π) is the collective income function, where πT is the transpose

of π.

The utility maximization problem under the budget constraint takes the

form:

max
x

U(x, µ) subject to πTx ≤ w(π)

where U(x, µ) is the utility function that takes the form:

U(x, µ) = max
y1,y2,...,yM ,Y

{ M∑
m=1

µm(π)Um(y1, y2, . . . , yM , Y )|y = x

}
where x is the total purchases of the household, w(π) is the household’s

income function and

y =
M∑
m=1

ym + Y

The solution of this problem is characterized in [11] when the income function

is price dependent.

We define a differential 1-form and set up an integration problem. The

integration problem splits into Mathematical integration problem and Eco-

nomic integration problem.

• Mathematical integration. Given function ξ(π) ∈ RN
+ , what are the

necessary and sufficient conditions for the existance of 2M functions

λl(π), V l(π), l = 1, . . . ,M that satisfy the equation

M∑
l=1

λl(p)
∂V l

∂πi
= ξi − ∂w

∂πi
(5.1)
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with w(π) = πT ξ.

• Economic integration. In addition to mathematical integration, we

impose the following condition on the functions that satisfy equation

(5.1); the functions λl(π) are positive and the functions V l(π) are

strongly concave.

The necessary and sufficient conditions for mathematical integration will

be solved using Darboux Theorem [15].

5.1 Collective Demand Function: Non-

homogeneous Case

Consider a household that consists of M members. Each consumer is

characterized by his own utility function

U1, U2, . . . , UM : RN(M+1) → R.

So that Um(y1, y2, . . . , yM , Y ) where ym ∈ RN
+ is member m’s private con-

sumption and Y ∈ RN
+ is the household’s common consumption of public

goods and Um is increasing and strongly concave.

Pareto optimal allocations are characterized by the following maximiza-

tion problem

(F)


max

y1,y2,...,yM ,Y

M∑
m=1

µm(π)Um(y1, y2, . . . , yM , Y )

subject to

x = y and πTx ≤ w(π).

where x is the total purchases of the household, w(π) is the household’s
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income function and

y =
M∑
m=1

ym + Y

We assume the household’s income function w(π) is nonhomogeneous. The

above maximization problem can be written as a two stage maximization

problem

max
x

U(x, µ) subject to πTx ≤ w(π) (P1)

where

U(x, µ) = max
y1,y2,...,yM ,Y

{ M∑
m=1

µm(π)Um(y1, y2, . . . , yM , Y )|y = x

}
(P2)

we note that the solution x = ξ(π) of problem (P1) is obsevable, whereas the

solution (y1, y2, . . . , yM , Y ) of problem (P2) is not.

Define the function V̂ as follow:

V̂ (π, µ) = max
x
{U(x, µ)|πTx ≤ w(π)}

Let x = ξ̂(π, µ) be the maximizer that satisfies πT ξ̂(π, µ) = w(π) which is

a Marshallian demand function when consumer’s income is price dependent.

The collective indirect utility function is defined as follow:

V (π) = V̂ (π, µ(π)) = U(ξ(π, µ(π)), µ(π)) (5.2)

Theorem 5.1. Let V (π) be the indirect utility function defined by (5.2). If

w(π) is a convex function then V (π) is quasi-convex.

Proof. Let π̄ and π̂ be price vectors. Consider the combinations

π̃ = tπ̂ + (1− t)π̄, for t ∈ (0, 1).

Suppose that V (π̄) ≤ U(x, µ) and V (π̂) ≤ U(x, µ). We want to prove that
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V (π̃) ≤ max{V (π̄), V (π̂)}. Introduce the following sets

Ŝ = {x|π̂Tx ≤ w(π̂)}, S̄ = {x|π̄Tx ≤ w(π̄)}, S̃ = {x|π̃Tx ≤ w(π̃)}.

We claim that S̃ ⊂ S̄ ∪ Ŝ. If this is not the case, then there exists x such

that π̄Tx > w(π̄) and π̂Tx > w(π̂) whereas π̃Tx ≤ w(π̃). It follows that for

any t ∈ (0, 1), tπ̂Tx > tw(π̂) and (1 − t)π̄Tx > (1 − t)w(π̄). Adding up the

last two inqualities and using the convexity of w(π), we get

π̃Tx = (tπ̂ + (1− t)π̄)Tx > tw(π̄) + (1− t)w(π̂) ≥ w(tπ̂ + (1− t)π̄) = w(π̃)

Hence, π̃Tx ≥ w(π̃) which is a contradiction. So S̃ ⊂ S̄ ∪ Ŝ which implies

that

V (π̃) = max
x∈S̃

U(x, µ) ≤ max
x∈S̄∪Ŝ

U(x, µ) = max{V (π̄), V (π̂)}

which means that V (π) is quasi-convex. Hence, we get the required result.

The map π → ξ̂(π, µ) is the standard Marshalian demand function

associated to x → U(x, µ). This map satisfies the budget constraint

πT ξ̂(π, µ1, . . . , µM) = w(π) and the extended Slutsky matrix S(π) defined

by

S(π) = Dπ ξ̂ −
1

πT (Dπ ξ̂)π
(Dπ ξ̂)ππ

T (Dπ ξ̂)

In addition, it is related to ξ by ξ(π) = ξ̂(π, µ1, µ2, . . . , µM).

Proposition 5.2. [The SR(M-1) Condition] Suppose that ξ(π) is a col-

lective demand function and w(π) is the household’s income function. Then,

the extended Slutsky matrix is the sum of a symmetric matrix plus a matrix

of rank at most M − 1; that is,

S(π) = Σ(π) +R(π)
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where:

(1) The matrix Σ(π) is symmetric and satisfies v′Σ(π)v = 0 for all vectors

v ∈ Span{π} and v′Σ(π)v < 0 for all vectors v /∈ Span{π}.

(2) The matrix R(π) is of rank at most M − 1.

Proof. Since ξ(π) = ξ̂(π, µ1(π), µ2(π), . . . , µM(π)). Then,

Dπξ = Dπ ξ̂ +
M−1∑
m=1

(Dµm ξ̂)(Dπµm). (5.3)

Thus, the extended Slutsky matrix correspending to the collective demand

function ξ is:

S(π) = Dπξ −
1

πT (Dπξ)π
(Dπξ)ππ

T (Dπξ)

Using equation (5.3), we get

S(π) = Dπ ξ̂+
M−1∑
m=1

(Dµm ξ̂)(Dπµm)− 1

πT (Dπξ)π

(
Dπ ξ̂ +

M−1∑
m=1

(Dµm ξ̂)(Dπµm)

)
ππT (Dπξ).

Rewrite this equation as:

S(π) = Dπ ξ̂ −
1

πT (Dπξ)π
(Dπ ξ̂)ππ

T (Dπξ)

+
M−1∑
m=1

(Dµm ξ̂)(Dπµm)

(
I − 1

πT (Dπξ)π
ππT (Dπξ)

)

= Σ(π) +
M−1∑
m=1

am(π)bm(π).

Where the matrix Σ(π) is the extended Slutsky matrix associated with the

function ξ̂(•, µ1, . . . , µM), the matrix Σ(π) has the standard Slutsky proper-
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ties, and where am(π) and bm(π) are vectors defined by:

am(π) = Dµm ξ̂, bm(π) = (Dπµm)

(
I − 1

πT (Dπξ)π
ππT (Dπξ)

)
.

In particular, am(π)bm(π) is of rank at most 1 for all m = 1, . . . ,M − 1, so

that R(π) =
∑M−1

m=1 am(π)bm(π) is of rank at most M − 1. It follows that

the extended Slutsky matrix S(π) decomposes as the sum of a Symmetric

matrix plus a matrix of rank at most M − 1.

Assume that the household’s income function w(π) is a non-homogeneous

function, then the collective demand function ξ(π) is also non-homogeneous.

Define the differential 1-form ω as follow:

ω =
N∑
i=1

ξidπi − dw (5.4)

its exterior derivative is

dω =
N∑

i,j=1

∂ξi

∂πj
dπj ∧ dπi

Introduce the vector field Π as

Π =
N∑
i=1

πi
∂

∂πi
.

Differentiating the budget constraint πT ξ = w(π), we get

ξi − ∂w

∂πi
= −

∑
k

∂ξk

∂πi
πk = −πTDπiξ.

Then, the differential 1-form ω can be written as

ω =
N∑
i=1

ξidπi − dw = −
N∑

i,k=1

∂ξk

∂πi
πkdπi.
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Proposition 5.3. Let ξ(π) be a collective demand function of class

C2. Let ω be the differential 1-form defined above and dω be its exte-

rior derivative. Then, there exist 2M − 1 linearly independent 1-forms

ρ, α1, . . . , αM−1, β1, . . . , βM−1 such that

dω = ρ ∧ ω +
M−1∑
m=1

αm ∧ βm

Proof. Since

S(π) = Σ(π) +
M−1∑
m=1

am(π)bm(π)

Then,

dω =
N∑

i,j=1

(
∂xi

∂πj
− ∂xj

∂πi

)
dπi ∧ dπj

=
N∑

i,j=1

{
M−1∑
m=1

(
aimb

j
m − ajmbim

)
+

(
vi

[∑
k

∂ξk

∂πj
πk

]

−vj
[∑

k

∂ξk

∂πi
πk

])}
dπi ∧ dπj

where vector v is defined as:

v =
1

πT (Dπξ)π
(Dπξ)π.

So,

dω =
M−1∑
m=1

αm ∧ βm + ρ ∧ ω

where

αm =
N∑
i=1

aimdπi, βm =
N∑
i=1

bimdπi

The proof is complete.

Lemma 5.4. [11] The following conditions are equivalent:
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(1) The Slutsky matrix S(π) decomposes as S(π) = Σ(π)+
M−1∑
m=1

am(π)bm(π),

with Σ(π) symmetric.

(2) ω ∧ (dω)M = 0.

(3) There exists 2M − 1 linearliy independent 1-forms (ρ, α1, . . . , αM−1,

β1, . . . , βM−1) such that dω = ρ ∧ ω +
M−1∑
m=1

αm ∧ βm.

The following theorem is a consequence of the Convex Darboux Theorem

and solves the economic integration problem.

Theorem 5.5. Let ξ(π) be a C∞ function that satisfies π′ξ(π) = w(π)

and the SR(M-1) condition in a neighbourhood, U , of π̄. Suppose that

the matrix Σ(π) is symmetric and negative definite on E(π)⊥ = span{ξ −

Dπw,Dµ1 ξ̂, . . . , DµM−1
ξ̂}⊥. Then, there exist M positive functions λm and

M strongly concave functions V m such that

ξ(π) =
M∑
m=1

λmDπV
m(π) +Dπw

in some neighbourhood, V, of π̄. Moreover, the function w(π) is convex.

Proof. Let ωi and Ωi,j be defined by

ωi = ξi − ∂w

∂πi
and Ωi,j =

∂ξi

∂πj
− ∂2w

∂πjπi
.

Then, Ω = Dπξ −D2
πw can be written as

Ω = S(π) +
1

πT (Dπξ)π
(Dπξ)ππ

T (Dπξ)−D2
πw

= Σ(π) +
M−1∑
m=1

am(π)bm(π) +
1

πT (Dπξ)π
(Dπξ)ππ

T (Dπξ)−D2
πw.

Introduce a subspace E(π) as

E(π) = {ξ −Dπw,Dµ1 ξ̂, . . . , DµM−1
ξ̂}.
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The restriction of Ω to E(π)⊥ is symmetric and negative definite. Since

the matrix Σ(π) is symmetric and negative definite on E(π)⊥ and D2
πw is

positive semi-definite on E(π)⊥. The result follows from Convex Darboux

Theorem.

Theorem 5.6. [11] A necessary and sufficient condition for a smooth dif-

ferential 1-form ω =
N∑
i=1

ξidπi − dw(π) defined in a neighborhood; U , of π̄ to

decompose into the sum ω =
M∑
i=1

f idgi, in a neighborhood; V ⊂ U , of π̄, for

some positive functions f i and strongly concave functions gi, is that there

exist 2M−1 linearly independent 1-forms α1, . . . , αM−1, β1, . . . , βM−1, γ such

that dω decompose as

dω = ω ∧ γ +
M−1∑
i=1

αi ∧ βi

in a neighborhood;V ⊂ U , of π̄, and the matrix

Ω(π̄) = Dπξ(π̄)−D2
πw(π̄)

is symmetric and negative definite on [E(π̄)]⊥, where

E(π) = Span{ω, β1, . . . , βM−1}.

5.2 Collective Demand Function: Homoge-

neous Case.

In this section, we consider problem F with the additional assumption

that the collective income function w(π) is 1-homogeneous and the Pareto

weights µm(π),∀m = 1, . . . ,M are 0-homogeneous; that is,

Dπw(π)π = w(π), and Dπµm(π)π = 0, ∀m = 1, . . . ,M.
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As before, the problem F can be written as a two stage maximization problem

max
x

U(x, µ) subject to π′x ≤ w(π) (P1)

where

U(x, µ) = max
y1,y2,...,yM ,Y

{ M∑
m=1

µm(π)Um(y1, y2, . . . , yM , Y )|y = x

}
(P2)

The first-order conditions for (P1) are

Ux = λ(π)π

πTx ≤ w(π)

where λ(π) > 0 is the Lagrange multiplier associated with the constraint.

Define the function V̂ (π, µ) as

V̂ (π, µ) = max
ξ
{U(ξ, µ)|πT ξ ≤ w(π)}.

So the collective indirect utility function is defined as

V (π) = V̂ (π, µ(π)) = U(ξ(π), µ(π))

Using envelope theorem, we find that

∂V

∂πi
= λ(π)

(
∂w

∂πi
− ξi

)
+

M∑
m=1

∂U

∂µm

∂µm
∂πi

The homogeneity assumption on w(π) implies that the collective demand

function ξ(π) is 0-homogeneous and the collective indirect utility function

V (π) is 0-homogeneous and the Lagrange multiplier function λ(π) is −1-

homogeneous; that is,

Dπξ(π)π = 0, DπV (π)π = 0, and Dπλ(π)π = −λ(π).
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In this setting, the Slutsky matrix takes the form

S(π) = Dπ ξ̂ −
1

πT (Dπξ)π
(Dπ ξ̂)ππ

T (Dπξ) +
M−1∑
m=1

(Dµm ξ̂)(Dπµm).

We notice that the Slutsky matrix of the collective demand function ξ(π)

decomposes as the sum of a symmetric matrix plus a matrix of rank at most

M − 1. Call this condition SRH(M-1).

Define the 0-homogeneous differential 1-form ω as

ω(π) =
N∑
i=1

(ξi − ∂w

∂πi
)dπi.

and the vector field Π as

Π =
N∑
i=1

πi
∂

∂πi

Proposition 5.7. Let ξ(π) be a collective demand function, V (π) be the

collective indirect utility function and let V m(π) be the indirect utility function

for member m. Then,

∂V

∂πi
= λ(π)

(
∂w

∂πi
− ξi

)
+

M−1∑
m=1

(
V m(π)− V M(π)

) ∂µm
∂πi

.

Proof. We know that the collective demand function ξ(π) is the solution of

the following maximization problem

max
ξ
U(ξ, µ(π)) subject to πT ξ ≤ w(π).

The envelope theorem implies that the derivative of the function V (π) with

respect to πi is given by

∂V

∂πi
= λ(π)

(
∂w

∂πi
− ξi

)
+

M∑
m=1

∂U

∂µm

∂µm
∂πi
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But

U(ξ, µ(π)) =
M∑
m=1

µm(π)Um(y1, . . . , yM , Y ).

Using the normalization condition
∑M

m=1 µm(π) = 1, we can write U(ξ, µ(π))

as

U(ξ, µ(π)) =
M−1∑
m=1

µm(π)(Um(y1, . . . , yM , Y )−UM(y1, . . . , yM , Y ))+UM(y1, . . . , yM , Y ).

It follows that

∂U

∂µm
= Um(y1, . . . , yM , Y )− UM(y1, . . . , yM , Y ) = V m(π)− V M(π).

Thus,

∂V

∂πi
= λ(π)

(
∂w

∂πi
− ξi

)
+

M−1∑
m=1

(
V m(π)− V M(π)

) ∂µm
∂πi

.

Then we can decompose ω as

ω =
−1

λ(π)
dV (π) +

M−1∑
m=1

φmdµm.

where φm = Vm(π)−VM (π)
λ(π)

. Notice that ω is decomposed as

ω(π) =
M∑
m=1

am(π)dum(π)

where the functions am(π) are 1-homogeneous and the functions um(π) are

0-homogeneous.
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5.3 Individual Excess Demands

In many applications, it can be helpful to consider the excess demand

functions instead of Marshallian demand functions. So, for any Marshallian

demand function x(p), there exists an excess demand function z(p) defined

by z(p) = x(p) − e where e ∈ Rn
+ is the initial endowment. In [10], the

authors give the local and global characterization of excess demand functions.

In [4,6], Aloqeili generalizes the characterization conditions of excess demand

functions of Geanakoplos and polemarchakis. In this section, we solve the

homogeneous mathematical integration problem and economic integration

problem of excess demand function z(p).

Let U(x) be a consumer utility function over a set of consumption bun-

dles that satisfy certain smoothness, monotonicity, and concavity conditions

and let the Marshallian demand function x ∈ Rn
+ sloves the individual max-

imization problem

(Z)
{

max
x

U(x) subject to pTx = pT e.

where e is the initial endowment and p ∈ Rn
++ is the price vector that is

associated with the consumption bundle x. Note that the income function

w(p) = pT e is homogeneous of degree one. The excess demand function is

defined by z(p) = x(p) − e where x(p) solves the problem Z. Note that

zp = xp. Then, the Jacobian matrix zp(p) satisfies

zp = λU−1 − λ

pTU−1p
(U−1p)(U−1p)T − U−1p

pTU−1p
zT (p) (5.5)

where U is the Hessian matrix of U(x). Thus, the problem Z can be written

as follow:

max
z
u(z) subject to pT z = 0
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where u(z) = U(z + e). The Slutsky matrix Ŝ = xp − x(p)
w(p)

(pTxp) takes the

form:

zp +
1

pT e
(z(p) + e)(zT (p))

Since z(p)zT (p) is a symmetric matrix, the Slutsky matrix of excess demand

functions is a symmetric matrix ŝ defined as follow:

ŝ = zp +
1

pT e
ezT (p)

Proposition 5.8. Let z(p) be an excess demand function. The matrix ŝ has

the following properties:

(1) ŝ = ŝT .

(2) pT ŝ = ŝp = 0.

(3) The matrix ŝ is negative semi-definite.

(4) The matrix ŝ has rank n− 1.

The first-order conditions for maximum are

uz = λ(p)p

pT z(p) = 0

where λ(p) > 0 is the Lagrange multiplier associated with the constraint.

Introduce the indirect utility function V (p) defined by

V (p) = max
z
{u(z)|z ∈ Rn, pT z ≤ 0}

By the envelope theorem, we get

Vp(p) = −λ(p)z(p) (5.6)
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Proposition 5.9. Let V (p) be an indirect utility function, u(z) is reguler.

Then, V (p) is quasi-convex, positively homogeneous of degree zero.

Define 0-homogeneous differential 1-form ω as follow:

ω =
n∑
i=1

zi(p)dpi (5.7)

Introduce the vector field π as

π =
n∑
i=1

pi
∂

∂pi

Then, equation (5.6) implies that the differential 1-form ω that is defined in

(5.7) can be represented in the form

ω = µdV

where the function µ is negative and homogeneous of degree one and the

function V is quasiconvex and homogeneous of degree zero.
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